Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Chem Soc ; 146(19): 13306-13316, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690945

ABSTRACT

Traditional superwettable membranes for demulsification of oil/water emulsions could not maintain their separation performance for long because of low demulsification capacity and surface fouling during practical applications. A charging membrane could repel the contaminants for a while, the charge of which would gradually be neutralized during the separation progress. Here, a superhydrophilic piezoelectric membrane (SPM) with sustained demulsification and antifouling capacity is proposed for achieving prolonged emulsion separation, which is capable of converting inherent pulse hydraulic filtration pressure into pulse voltage. A pulse voltage up to -7.6 V is generated to intercept the oil by expediting the deformation and coalescence of emulsified oil droplets, realizing the demulsification. Furthermore, it repels negatively charged oil droplets, avoiding membrane fouling. Additionally, any organic foulants adhering to the membrane undergo degradation facilitated by the generated reactive oxygen species. The separation data demonstrate a 98.85% efficiency with a flux decline ratio below 14% during a 2 h separation duration and a nearly 100% flux recovery of SPM. This research opens new avenues in membrane separation, environmental remediation, etc.

2.
ACS Appl Mater Interfaces ; 15(6): 8742-8750, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36740783

ABSTRACT

The directional self-transportation of droplets has aroused great attention in microfluidic systems. However, most reported surfaces are mainly designed for driving water droplets to move in air, displaying low adaptability in complex environments. This work presents a wedge-shaped surface with multiple superwettability, i.e., superhydrophilicity/superoleophilicity and underwater superoleophobicity/underoil superhydrophobicity, fabricated by electrodeposition of a metal-organic framework on a copper sheet. This surface exhibited excellent performance for driving droplet self-transportation, regardless of the droplet type (water or oil) and environmental media (air or underliquids). In air, the wedge-shaped surface with wedge angle of 9.2° could move droplets of water and dodecane up to 24.5 mm and 17.9 mm, respectively. The movement of water droplet under dodecane, however, dropped from 24.5 mm to 22.1 mm, while the dodecane droplet underwater increased from 17.9 mm to 20.3 mm in moving displacement, indicating the underliquid environment is in favor of manipulation of oil droplets. Furthermore, the droplet convergence, transportation, and separation were achieved on the well-designed multiple wedge tracks in air with a total movement distance up to 60.0 mm. The test of micro-oil droplets collecting under water demonstrated that a sponge with two wedges has 2.1 times the oil droplet collection capacity over that of the sponge only, providing a new strategy for efficient treatment of the micro-oil droplets contaminated water.

3.
Chem Commun (Camb) ; 57(84): 11021-11024, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34605498

ABSTRACT

Stable Zr-UiO-67 is prepared by introducing a fluorine-containing layer on its surface through a polymeric network assisted post-synthetic modification (PSM) strategy. The stability of the MOFs in acidic, alkaline and saline environments is improved because of the existence of a protective layer. The MOFs are superlyophobic towards liquids with a surface tension threshold of over 48 mN m-1, making them a potential choice for separating various liquid-liquid mixtures and emulsions.

4.
J Hazard Mater ; 418: 126346, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34329000

ABSTRACT

Developing efficient separation materials for surfactant-stabilized oil/water emulsions is of great importance while significantly challenging. In this work, a sand filter with Janus channels was prepared by simply mixing superhydrophilic and superhydrophobic quartz sand in a mass ratio of 1:1. Due to the imbalanced force of droplets in those Janus channels, better separation performance under gravity was achieved for both surfactant-stabilized oil-in-water and water-in-oil emulsions than the superhydrophilic or superhydrophobic sand filter alone. It also received high flux (1080.13 L m-2 h-1 for dichloroethane-in-water emulsion and 1378.07 L m-2 h-1 for water-in-dichloroethane emulsion) and high separation efficiency (99.80% for dichloroethane-in-water emulsion and 99.98% for water-in-dichloroethane emulsion). Molecular dynamics based computational work and experimental studies revealed that the Janus channels of mixed sand layer exhibited greater interaction energy with emulsion droplets for more efficient adsorption, resulting in better demulsification capability and separation performance. The as-prepared Janus sand filters retained excellent separation performance after 50 cycles of the stability test. Together with the needs on only cheap and easily accessible raw materials and its environmentally friendly preparation method, this Janus sand filtration process exhibits its great potential for the separation of surfactant-stabilized oil/water emulsions.

SELECTION OF CITATIONS
SEARCH DETAIL