Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 188: 109910, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31740237

ABSTRACT

To alleviate the harmful effects of antibiotics on the environment and human health, the stress response and molecular network of Bacillus under tetracycline stress were investigated using a proteomics approach. During the exposure process, Bacillus subtilis exhibited a strong adaptation mechanism. Cell membrane and intracellular reactive oxygen species (ROS) level returned to normal after 5 h. A total of 312 upregulated and 65 downregulated proteins were identified, mainly involved in metabolism and the synthesis of ribosomes, DNA, and RNA. After tetracycline exposure, the core metabolism network was accelerated to supply precursors for the synthesis of DNA, RNA, proteins, peptidoglycans, and saturated fatty acids that were involved in ribosome protection, and strengthened the cell wall and cell membrane. The signal transduction pathways involved were analyzed in association with the stress response of B. subtilis at 15 min of exposure to tetracycline. The primary damage to the ribosome by tetracycline activated a series of response proteins. Antitoxin and heat-shock proteins were activated for the global regulation of transcription and metabolism. Trigger factor Tig was upregulated to ensure proper initiation of transcription and aerobic respiration. Temperature-sensor protein VicR from the two-component system was used by the cell to regulate the composition of the cell wall and cell membrane. The over-consumption of metabolites, such as phosphoribosyl diphosphate (PRPP), purine nucleoside triphosphate (GTP), and acetyl-CoA forced the cells to assimilate more sugar for glycolysis. To this end, methyl-accepting chemotaxis proteins (MCPs) and sugar transportation protein PtsG were upregulated, simultaneously. Ultimately, peroxidase was activated to eliminate the redundant ROS, to minimize cell damage. These findings presented a system-level understanding of adaption processes of bacteria to antibiotic stress.


Subject(s)
Adaptation, Physiological/physiology , Anti-Bacterial Agents/metabolism , Bacillus subtilis/physiology , Stress, Physiological , Tetracycline/metabolism , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Cell Wall/metabolism , Proteomics , Signal Transduction , Tetracycline/pharmacology
2.
Ecotoxicol Environ Saf ; 160: 328-341, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-29857237

ABSTRACT

Erythromycin is one of the most widely used macrolide antibiotics. To present a system-level understanding of erythromycin stress and degradation, proteome, phospholipids and membrane potentials were investigated after the erythromycin degradation. Bacillus thuringiensis could effectively remove 77% and degrade 53% of 1 µM erythromycin within 24 h. The 36 up-regulated and 22 down-regulated proteins were mainly involved in spore germination, chaperone and nucleic acid binding. Up-regulated ribose-phosphate pyrophosphokinase and ribosomal proteins confirmed that the synthesis of protein, DNA and RNA were enhanced after the erythromycin degradation. The reaction network of glycolysis/gluconeogenesis was activated, whereas, the activity of spore germination was decreased. The increased synthesis of phospholipids, especially, palmitoleic acid and oleic acid, altered the membrane permeability for erythromycin transport. Ribose-phosphate pyrophosphokinase and palmitoleic acid could be biomarkers to reflect erythromycin exposure. Lipids, disease, pyruvate metabolism and citrate cycle in human cells could be the target pathways influenced by erythromycin. The findings presented novel insights to the interaction among erythromycin stress, protein interaction and metabolism network, and provided a useful protocol for investigating cellular metabolism responses under pollutant stress.


Subject(s)
Anti-Bacterial Agents/toxicity , Bacillus thuringiensis/drug effects , Erythromycin/toxicity , Bacillus thuringiensis/metabolism , Bacterial Proteins/metabolism , Cell Membrane Permeability/drug effects , Glycolysis , Humans , Phospholipids/metabolism , Proteome/metabolism
3.
Water Res ; 124: 29-38, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28738271

ABSTRACT

The widespread, persistent and toxic organophosphorus esters (OPEs) have become one category of emerging environmental contaminants. Thus, it is in urgent need to develop a cost-effective and safe treatment technology for OPEs control. The current study is a comprehensive attempt to use UV/TiO2 heterogeneous photocatalysis for the degradation of a water dissolved OPEs, tris(2-chloroethyl) phosphate (TCEP). A pseudo-first order degradation reaction with a kobs of 0.3167 min-1 was observed, while hydroxyl radical may be the dominating reactive oxidative species. As the reaction proceeded, TCEP was transformed to a series of hydroxylated and dechlorinated products. The degradation efficiency was significantly affected by pH value, natural organic matters and anions, implying that the complete mineralization of TCEP would be difficult to achieve in actual water treatment process. Based on the proteomics analysis regarding the metabolism reactions, pathways and networks, the significant activation of transmembrane transport and energy generation in Escherichia coli exposed to preliminary degrading products suggested that they can be transported and utilized through cellular metabolism. Furthermore, the descending trend of stress resistance exhibited that the toxicity of products was obviously weakened as the treatment proceeded. In conclusion, hydroxylation and dechlorination of TCEP with incomplete mineralization were likewise effective for its detoxification, indicating that UV/TiO2 will be an alternative treatment method for OPEs control.


Subject(s)
Organophosphates/chemistry , Proteome , Bacteria/genetics , Phosphates , Photochemistry , Titanium/chemistry , Ultraviolet Rays , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL