Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 351
Filter
1.
World J Gastrointest Surg ; 16(7): 2167-2174, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39087123

ABSTRACT

BACKGROUND: In recent years, pure laparoscopic radical surgery for Bismuth-Corlette type III and IV hilar cholangiocarcinoma (HCCA) has been preliminarily explored and applied, but the surgical strategy and safety are still worthy of further improvement and attention. AIM: To summarize and share the application experience of the emerging strategy of "hepatic hilum area dissection priority, liver posterior separation first" in pure laparoscopic radical resection for patients with HCCA of Bismuth-Corlette types III and IV. METHODS: The clinical data and surgical videos of 6 patients with HCCA of Bismuth-Corlette types III and IV who underwent pure laparoscopic radical resection in our department from December 2021 to December 2023 were retrospectively analyzed. RESULTS: Among the 6 patients, 4 were males and 2 were females. The average age was 62.2 ± 11.0 years, and the median body mass index was 20.7 (19.2-24.1) kg/m2. The preoperative median total bilirubin was 57.7 (16.0-155.7) µmol/L. One patient had Bismuth-Corlette type IIIa, 4 patients had Bismuth-Corlette type IIIb, and 1 patient had Bismuth-Corlette type IV. All patients successfully underwent pure laparoscopic radical resection following the strategy of "hepatic hilum area dissection priority, liver posterior separation first". The operation time was 358.3 ± 85.0 minutes, and the intraoperative blood loss volume was 195.0 ± 108.4 mL. None of the patients received blood transfusions during the perioperative period. The median length of stay was 8.3 (7.0-10.0) days. Mild bile leakage occurred in 2 patients, and all patients were discharged without serious surgery-related complications. CONCLUSION: The emerging strategy of "hepatic hilum area dissection priority, liver posterior separation first" is safe and feasible in pure laparoscopic radical surgery for patients with HCCA of Bismuth-Corlette types III and IV. This strategy is helpful for promoting the modularization and process of pure laparoscopic radical surgery for complicated HCCA, shortens the learning curve, and is worthy of further clinical application.

2.
Sci Rep ; 14(1): 18332, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112624

ABSTRACT

Postpancreatectomy hemorrhage (PPH) is an important risk factor for postoperative complications after laparoscopic pancreaticoduodenectomy (LPD). Recent studies have reported that the use of ligamentum teres hepatis (LTH) in LPD may reduce the risk of PPH. Therefore, this study aims to investigate whether wrapping the hepatic hilar artery with the LTH can reduce PPH after LPD. We reviewed the data of 131 patients who underwent LPD in our team from April 2018 to December 2023. The patients were divided into Groups A (60 patients) and B (71 patients) according to whether the hepatic portal artery was wrapped or not. The perioperative data of the two groups were compared to evaluate the effect of LTH wrapping the hepatic hilar artery on LPD. The platelet count of Group A was (225.25 ± 87.61) × 10^9/L, and that of Group B was (289.38 ± 127.35) × 10^9/L, with a statistically significant difference (p < 0.001). The operation time of group A [300.00 (270.00, 364.00)] minutes was shorter than that of group B [330.00 (300.00, 360.00)] minutes, p = 0.037. In addition, A set of postoperative hospital stay [12.00 (10.00, 15.00)] days shorter than group B [15.00 (12.00, 19.50)] days, p < 0.001. No PPH occurred in Group A, while 8 patients in Group B had PPH (7 cases of gastroduodenal artery hemorrhage and 1 case of proper hepatic artery hemorrhage), p = 0.019. The new technique of wrapping the hepatic hilar artery through the LTH can effectively reduce the occurrence of PPH after LPD.


Subject(s)
Hepatic Artery , Laparoscopy , Pancreaticoduodenectomy , Postoperative Hemorrhage , Humans , Pancreaticoduodenectomy/adverse effects , Pancreaticoduodenectomy/methods , Male , Female , Middle Aged , Laparoscopy/adverse effects , Laparoscopy/methods , Hepatic Artery/surgery , Postoperative Hemorrhage/etiology , Postoperative Hemorrhage/prevention & control , Aged , Ligaments/surgery , Retrospective Studies , Operative Time , Adult , Postoperative Complications/prevention & control , Postoperative Complications/etiology , Length of Stay
3.
Materials (Basel) ; 17(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39124525

ABSTRACT

Pure titanium is a preferred material for medical applications due to its outstanding properties, and the fabrication of its surface microtexture proves to be an effective method for further improving its surface-related functional properties, albeit imposing high demands on the processing accuracy of surface microtexture. Currently, we investigate the fabrication of precise microtextures on pure titanium surfaces with different grid depths using precision-cutting methods, as well as assess its impact on surface wettability through a combination of experiments and finite element simulations. Specifically, a finite element model is established for pure titanium precision cutting, which can predict the surface formation behavior during the cutting process and further reveal its dependence on cutting parameters. Based on this, precision-cutting experiments were performed to explore the effect of cutting parameters on the morphology of microtextured pure titanium with which optimized cutting parameters for high-precision microtextures and uniform feature size were obtained. Subsequent surface wettability measurement experiments demonstrated from a macroscopic perspective that the increase in the grid depth of the microtexture increases the surface roughness, thereby enhancing the hydrophilicity. Corresponding fluid-solid coupling finite-element simulation is carried out to demonstrate from a microscopic perspective that the increase in the grid depth of the microtexture decreases the cohesive force inside the droplet, thereby enhancing the hydrophilicity.

4.
J Comput Chem ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072777

ABSTRACT

Easy and effective usage of computational resources is crucial for scientific calculations. Following our recent work of machine-learning (ML) assisted scheduling optimization [J. Comput. Chem. 2023, 44, 1174], we further propose (1) the improved ML models for the better predictions of computational loads, and as such, more elaborate load-balancing calculations can be expected; (2) the idea of coded computation, that is, the integration of gradient coding, in order to introduce fault tolerance during the distributed calculations; and (3) their applications together with re-normalized exciton model with time-dependent density functional theory (REM-TDDFT) for calculating the excited states. Illustrated benchmark calculations include P38 protein, and solvent model with one or several excitable centers. The results show that the improved ML-assisted coded calculations can further improve the load-balancing and cluster utilization, owing primarily profit in fault tolerance that aims at the automated quantum chemical calculations for both ground and excited states.

5.
Zool Res ; 45(4): 937-950, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39021082

ABSTRACT

Autophagy plays a pivotal role in diverse biological processes, including the maintenance and differentiation of neural stem cells (NSCs). Interestingly, while complete deletion of Fip200 severely impairs NSC maintenance and differentiation, inhibiting canonical autophagy via deletion of core genes, such as Atg5, Atg16l1, and Atg7, or blockade of canonical interactions between FIP200 and ATG13 (designated as FIP200-4A mutant or FIP200 KI) does not produce comparable detrimental effects. This highlights the likely critical involvement of the non-canonical functions of FIP200, the mechanisms of which have remained elusive. Here, utilizing genetic mouse models, we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1, primarily via TAX1BP1 in NSCs. Conditional deletion of Tax1bp1 in fip200 hGFAP conditional knock-in (cKI) mice led to NSC deficiency, resembling the fip200 hGFAP conditional knockout (cKO) mouse phenotype. Notably, reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200 hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation. Conversely, a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration. Furthermore, conditional deletion of Tax1bp1 in fip200 hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200 hGFAP cKO mice. Collectively, these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function, presenting novel therapeutic targets for neurodegenerative diseases.


Subject(s)
Autophagy-Related Proteins , Autophagy , Neural Stem Cells , Animals , Neural Stem Cells/physiology , Neural Stem Cells/metabolism , Mice , Autophagy/physiology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Knockout , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Gene Expression Regulation , Neoplasm Proteins
6.
J Hazard Mater ; 476: 134963, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38908186

ABSTRACT

Integrating cascaded photocatalytic H2O2 generation and subsequent activation of H2O2 (into ·OH radicals) with solar-driven interfacial evaporation techniques offers an effective and sustainable approach for in-situ treating water contaminated with organic substances. Unlike traditional water-dispersed catalysts, the interfacial evaporation approach presents unique challenges in photocatalytic reactions. We explored these dynamics using an AgI/PPy/MF interfacial photothermal set, achieving H2O2 production efficiency (approximately 1.53 mM/g/h) - three times higher than submerged counterparts. This efficiency is attributed to exceptional solar light absorption (about 95 %), a significant surface photothermal effect (raising temperatures by approximately 36 °C), and enhanced oxygen availability (38 times more than in water), all characteristic of the interfacial system. The in-situ activation of H2O2 into ·OH notably improves the degradation of organic pollutants, achieving up to 99 % removal efficiency. This comprehensive analysis highlights the potential of combining photocatalytic H2O2 processes with interfacial evaporation for efficiently purifying organically polluted water.

7.
Adv Mater ; : e2403111, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934213

ABSTRACT

Bioelectronics is an exciting field that bridges the gap between physiological activities and external electronic devices, striving for high resolution, high conformability, scalability, and ease of integration. One crucial component in bioelectronics is bioelectrodes, designed to convert neural activity into electronic signals or vice versa. Previously reported bioelectrodes have struggled to meet several essential requirements simultaneously: high-fidelity signal transduction, high charge injection capability, strain resistance, and multifunctionality. This work introduces a novel strategy for fabricating superior bioelectrodes by merging multiple charge-transfer processes. The resulting bioelectrodes offer accurate ion-to-electron transduction for capturing electrophysiological signals, dependable charge injection capability for neuromodulation, consistent electrode potential for artifact rejection and biomolecule sensing, and high transparency for seamless integration with optoelectronics. Furthermore, the bioelectrode can be designed to be strain-insensitive by isolating signal transduction from electron transportation. The innovative concept presented in this work holds great promise for extending to other electrode materials and paves the way for the advancement of multimodal bioelectronics.

8.
Huan Jing Ke Xue ; 45(6): 3671-3678, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897786

ABSTRACT

Microplastics (MPs) and antibiotic resistance genes (ARGs) are typical co-existing emerging pollutants in wastewater treatment plants. MPs have been shown to alter the distribution pattern of ARGs in sludge, but their effects on free extracellular ARGs (feARGs) in wastewater remain unclear. In this study, we used fluorescence quantitative PCR to investigate the dynamics of feARGs (including tetC, tetO, sul1, and sul2) in wastewater and their transition mechanisms after 60 d of exposure to typical MPs (polystyrene, PS). The results showed that the absolute abundance of tetracycline feARGs decreased by 28.4 %-76.0 % and 35.2 %-96.2 %, respectively, under nm-level and mm-level PS exposure and changed by -55.4 %-122.4 % under µm-level PS exposure. The abundance of sul1 showed a trend of nm-level > µm-level > mm-level upon PS exposure, and the changes in sul1 abundance was greater with ρ(PS)=50 mg·L-1 exposure. The relative abundance of sul2 was reduced by 25.4 %-42.6 % and 46.1 %-90.3 % after µm-level and mm-level PS exposure, respectively, and increased by 1.9-3.9 times after nm-level PS exposure, and the sul2 showed a higher reduction at ρ (PS)=50 mg·L-1 exposure than that at ρ (PS)=0.5 mg·L-1. The Pearson correlation analysis showed that the relative abundance of feARGs during PS exposure was positively correlated with cell membrane permeability and typical mobile genetic elements (intI1) abundance and negatively correlated with reactive oxygen species level. Our findings elucidated the effects and corresponding mechanisms of PS on the growth and mobility of feARGs in wastewater, providing a scientific basis for the control of the combined MPs and ARGs pollution in wastewater.


Subject(s)
Genes, Bacterial , Microplastics , Polystyrenes , Wastewater , Microplastics/toxicity , Drug Resistance, Microbial/genetics , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods
9.
BMC Gastroenterol ; 24(1): 205, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890649

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Hepatitis B virus (HBV) is one of the major causes of liver cirrhosis (LC) and HCC. Therefore, the discovery of common markers for hepatitis B or LC and HCC is crucial for the prevention of HCC. METHODS: Expressed genes for to chronic active hepaititis B (CAH-B), LC and HCC were obtained from the GEO and TCGA databases, and co-expressed genes were screened using Protein-protein interaction (PPI) networks, least absolute shrinkage and selection operator (LASSO), random forest (RF) and support vector machine - recursive feature elimination (SVM-RFE). The prognostic value of genes was assessed using Kaplan-Meier (KM) survival curves. Columnar line plots, calibration curves and receiver operating characteristic (ROC) curves of individual genes were used for evaluation. Validation was performed using GEO datasets. The association of these key genes with HCC clinical features was explored using the UALCAN database ( https://ualcan.path.uab.edu/index.html ). RESULTS: Based on WGCNA analysis and TCGA database, the co-expressed genes (565) were screened. Moreover, the five algorithms of MCODE (ClusteringCoefficient, MCC, Degree, MNC, and DMNC) was used to select one of the most important and most closely linked clusters (the top 50 genes ranked). Using, LASSO regression model, RF model and SVM-RFE model, four key genes (UBE2T, KIF4A, CDCA3, and CDCA5) were identified for subsequent research analysis. These 4 genes were highly expressed and associated with poor prognosis and clinical features in HCC patients. CONCLUSION: These four key genes (UBE2T, KIF4A, CDCA3, and CDCA5) may be common biomarkers for CAH-B and HCC or LC and HCC, promising to advance our understanding of the molecular basis of CAH-B/LC/HCC progression.


Subject(s)
Carcinoma, Hepatocellular , Cell Cycle Proteins , Computational Biology , Kinesins , Liver Cirrhosis , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Humans , Kinesins/genetics , Liver Cirrhosis/genetics , Computational Biology/methods , Cell Cycle Proteins/genetics , Prognosis , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/complications , Biomarkers, Tumor/genetics , Protein Interaction Maps/genetics , Male , Kaplan-Meier Estimate , Support Vector Machine
10.
BMC Geriatr ; 24(1): 536, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902657

ABSTRACT

BACKGROUND: Childhood adversities may lead to decreased activity participation in later life, impacting memory health in ageing adults. Childhood adversities related to deprivation and threat, as conceptualized by the Dimensional Model of Adversity, can exhibit distinct impacts on cognitive and emotional outcomes in children and younger adults. This study examined the potential influence of childhood deprivation and threat on memory function in later life and the mediating role of activity participation in these relationships. METHODS: This study used data from the first wave of Panel Study of Active Ageing and Society (PAAS), a representative survey of Hong Kong residents aged 50 or above (N = 1,005). Key variables included late-life memory function measured by delayed recall test, deprivation- and threat-related childhood adversities, and the frequency of participation in informal and formal types of activities. Mediation tests were used for analysis. RESULTS: Childhood deprivation was associated with a lower late-life memory function, whereas threat was not. The negative effects of childhood deprivation and its subdomain, economic hardship, on memory function were mediated by activity participation. Total participation scores presented the strongest mediating effect (17.3-20.6%), with formal activities playing a more substantial mediating role than informal activities in mitigating the effect of childhood deprivation. CONCLUSIONS: These findings expand the applicability of the Dimensional Model of Adversity to ageing populations, highlighting the influence of deprivation on life-long cognitive development. Furthermore, this study revealed an indirect mechanism by which childhood deprivation affects memory health in old age through diverse activity participation.


Subject(s)
Adverse Childhood Experiences , Humans , Male , Female , Aged , Middle Aged , Adverse Childhood Experiences/psychology , Hong Kong/epidemiology , Memory/physiology , Aging/psychology , Aging/physiology , Aged, 80 and over , Child
11.
Angew Chem Int Ed Engl ; 63(32): e202407836, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38752620

ABSTRACT

Sb2S3 has been extensively used as light absorber for photoelectrochemical cell. However, its p-type nature may result in the formation of Schottky junction with substrates, thus hindering the collection of photogenerated holes. Herein, an ultrathin CuxS layer is successfully engineered as the bottom junction for Sb2S3 for the first time. Capitalizing on its impressive electrical properties and superior optical properties, the CuxS layer exhibits a high work function of 4.90 eV, which causes the upward band bending of p-type Sb2S3, forming a hole-transparent structure with ohmic contact. The transparency of the ultrathin CuxS layer enables back-illumination of the Sb2S3/CuxS platform, facilitating the integration of intricate catalyst layers for photoelectrochemical transformation. When modified with Pt nanoparticles, the photocurrent density reaches -5.38 mA cm-2 at 0 V vs. RHE, marking a fourfold increase compared to the photocathode without CuxS layer. When introducing a molecular hybrid TC-CoPc@carbon black, a remarkable average photocurrent density of -0.44 mA cm-2 at the overpotential of 0 V is obtained for CO2 reduction reaction, while the photocurrent density is less than -0.03 mA cm-2 without CuxS.

12.
J Dairy Sci ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754819

ABSTRACT

We investigated the short- and long-term effects of different forage types supplemented in preweaning dairy calves on growth performance, blood metabolites, rumen fermentation, bacterial community, and milk production during first lactation. Sixty healthy 1-mo-old female Holstein calves were blocked by birth date and body weight and randomly assigned to one of 3 groups (n = 20): normal milk and pelleted starter feeding (CON), supplemented with chopped oat hay [75.0 g/d/calf (dry matter (DM) basis); OAH], or alfalfa hay [75.0 g/d/calf (DM basis); ALF]. The forage supplementation started when calves were 30 d old (D1 of the experimental period) and ended when they were 73 d old (D44 of the experimental period when calves were weaned. Milk and feed intakes and fecal consistency scores were recorded daily. Growth performance, rumen fluid, and blood samples were collected bi-weekly. After weaning, all the calves were integrated with the same barn and diets. After calving, the milk production was recorded daily. During the experimental period, the OAH group had greater solid feed and total DM intakes and greater rumen pH than the CON group (P ≤ 0.04), but had lower forage intake and crude protein digestibility than the ALF group (P ≤ 0.04). The ALF group had higher rumen pH and blood ß-hydroxybutyrate concentration (P ≤ 0.04), lower fecal score (P = 0.02), and greater ether extract digestibility (P = 0.02) than the CON group. The ALF and OAH groups had lower concentrations of ruminal total volatile fatty acids (P = 0.01). Still, the ALF group had a greater proportion of acetate and a relative abundance of cellulose degradation-related bacteria (Lachnoclostridium_1 and Oribacterium) and a lower relative abundance of inflammation-related bacteria (Erysipelotrichaceae_UCG-009) in the rumen compared with CON. Interestingly, the average milk production from 6 to 200 d in milk (DIM) was greater in the ALF group (P < 0.01) even though no significant effects were found on the rumen fermentation parameters and blood metabolites at 200 DIM. Generally, alfalfa hay supplementation in preweaning dairy calves had positive effects in the short- and long-term in terms of rumen development, health status, and future milk production.

13.
Cyborg Bionic Syst ; 5: 0105, 2024.
Article in English | MEDLINE | ID: mdl-38711958

ABSTRACT

Soft robotics has received substantial attention due to its remarkable deformability, making it well-suited for a wide range of applications in complex environments, such as medicine, rescue operations, and exploration. Within this domain, the interaction of actuation and sensing is of utmost importance for controlling the movements and functions of soft robots. Nonetheless, current research predominantly focuses on isolated actuation and sensing capabilities, often neglecting the critical integration of these 2 domains to achieve intelligent functionality. In this review, we present a comprehensive survey of fundamental actuation strategies and multimodal actuation while also delving into advancements in proprioceptive and haptic sensing and their fusion. We emphasize the importance of integrating actuation and sensing in soft robotics, presenting 3 integration methodologies, namely, sensor surface integration, sensor internal integration, and closed-loop system integration based on sensor feedback. Furthermore, we highlight the challenges in the field and suggest compelling directions for future research. Through this comprehensive synthesis, we aim to stimulate further curiosity among researchers and contribute to the development of genuinely intelligent soft robots.

14.
J Biomed Res ; : 1-11, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38807375

ABSTRACT

Meiotic resumption in mammalian oocytes involves nucleus and organelle structural changes, notably chromatin configuration transitioning from non-surrounding nucleolus (NSN) to surrounding nucleolus (SN) in germinal vesicle (GV) oocytes. Our study found that nuclear speckles, a subnuclear structure mainly composed of serine-arginine (SR) proteins, changed from a diffuse spotted distribution in mouse NSN oocytes to an aggregation pattern in SN oocytes. We further discovered that SRPK1, an enzyme phosphorylating SR proteins, co-localized with NS at SN stage and NSN oocytes failed to convert into SN oocytes after inhibiting the activity of SRPK1. Furthermore, the typical structure of chromatin ring around the nucleolus in SN oocytes collapsed after inhibitor treatment. To explore the underlying mechanism, phosphorylated SR proteins were confirmed to be associated with chromatin by salt extraction experiment, and in situ DNase I assay showed that the accessibility of chromatin enhanced in SN oocytes with SRPK1 inhibited, accompanied by decreased repressive modification on histone and abnormal recurrence of transcriptional signal. In conclusion, our results indicated that SRPK1-regulated phosphorylation on SR proteins was involved in the NSN to SN transition and played an important role in maintaining the condensation nucleus of SN oocytes via interacting with chromatin.

15.
Nano Lett ; 24(22): 6506-6512, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38789389

ABSTRACT

Early work demonstrated that some two-dimensional (2D) materials could kill bacteria by using their sharp edges to physically rupture the bacteria envelope, which presents distinct advantages over traditional antibiotics, as bacteria are not able to evolve resistance to the former. This mechano-bactericidal mode of action, however, suffers from low antibacterial efficiency, fundamentally because of random orientation of 2D materials outside the bacteria, where the desirable "edge-to-envelope" contacts occur with low probability. Here, we demonstrate a proof-of-concept approach to significantly enhance the potency of the mechano-bactericidal activity of 2D materials. This approach is in marked contrast with previous work, as the 2D materials are designed to be in situ generated inside the bacteria from a molecularly engineered monomer in a self-assembled manner, profoundly promoting the probability of the "edge-to-envelope" contacts. The rationale in this study sheds light on a mechanically new nanostructure-enabled antibacterial strategy to combat antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Nanostructures , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanostructures/chemistry , Escherichia coli/drug effects , Microbial Sensitivity Tests , Bacteria/drug effects
16.
Int J Biol Macromol ; 270(Pt 1): 132035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705316

ABSTRACT

The frequently encountered wastewater contaminations, including soluble aromatic compound and dye pollutants, pathogenic bacteria, and insoluble oils, have resulted in significant environmental and human health issues. It poses a challenge to utilize identical materials for the treatment of complex wastewater. Herein, in this research, multifunctional Ag NPs/guar gum hybrid hydrogels were fabricated using a facile in situ reduction and self-crosslinking method for efficient remediation of complex wastewater. The Ag NPs/guar gum hybrid hydrogel showed remarkable remodeling, adhesive, and self-healing characteristics, which was favorable for its versatile applications. The combination of Ag NPs with the guar gum skeleton endowed the hybrid hydrogel with exceptional catalytic activity for reducing aromatic compounds and dye pollutants, as well as remarkable antibacterial efficacy against pathogenic bacteria. In addition, the Ag NPs/guar gum hybrid hydrogel could be employed to coat a variety of substrates, including cotton fabrics and stainless steel meshes. The hydrogel coated cotton fabrics and meshes presented superhydrophilicity/underwater superoleophobicity, excellent antifouling capacity, and outstanding recyclability, which could be successfully applied for efficient separation of oil-water mixtures. The findings of this work provide a feasible and cost-effective approach for the remediation of intricate wastewater.


Subject(s)
Anti-Bacterial Agents , Galactans , Hydrogels , Mannans , Metal Nanoparticles , Plant Gums , Silver , Galactans/chemistry , Plant Gums/chemistry , Silver/chemistry , Mannans/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Catalysis , Metal Nanoparticles/chemistry , Hydrogels/chemistry , Wastewater/chemistry , Water Purification/methods , Water/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Oils/chemistry
17.
Environ Res ; 252(Pt 3): 119061, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38704011

ABSTRACT

Sludge is one of the primary reservoirs of microplastics (MPs), and the effects of MPs on subsequent sludge treatment raised attention. Given the entry pathways, MPs would exhibit different properties, but the entry pathway-dependent effect of MPs on sludge treatment performance and the fates of antibiotic resistance genes (ARGs), another high-risk emerging contaminant, were seldom documented. Herein, MPs with two predominant entry pathways, including wastewater-derived (WW-derived) and anaerobic digestion-introduced (AD-introduced), were used to investigate the effects on AD performance and ARGs abundances. The results indicated that WW-derived MPs, namely the MPs accumulated in sludge during the wastewater treatment process, exhibited significant inhibition on methane production by 22.8%-71.6%, while the AD-introduced MPs, being introduced in the sludge AD process, slightly increased the methane yield by 4.7%-17.1%. Meanwhile, MPs were responsible for promoting transmission of target ARGs, and polyethylene terephthalate MPs (PET-MPs) showed a greater promotion effect (0.0154-0.0936) than polyamide MPs (PA-MPs) (0.0013-0.0724). Compared to size, entry pathways and types played more vital roles on MPs influences. Investigation on mechanisms based on microbial community structure revealed characteristics (aging degree and types) of MPs determined the differences of AD performance and ARGs fates. WW-derived MPs with longer aging period and higher aging degree would release toxics and decrease the activities of microorganisms, resulting in the negative impact on AD performance. However, AD-introduced MPs with short aging period exhibited marginal impacts on AD performance. Furthermore, the co-occurrent network analysis suggested that the variations of potential host bacteria induced by MPs with different types and aging degree attributed to the dissemination of ARGs. Distinctively from most previous studies, the MPs with different sizes did not show remarkable effects on AD performance and ARGs fates. Our findings benefited the understanding of realistic environmental behavior and effect of MPs with different sources.


Subject(s)
Methane , Microplastics , Sewage , Methane/metabolism , Sewage/microbiology , Anaerobiosis , Microplastics/toxicity , Waste Disposal, Fluid , Drug Resistance, Microbial/genetics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
18.
Mol Med ; 30(1): 72, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822247

ABSTRACT

BACKGROUND: 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS: A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS: In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION: OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.


Subject(s)
Bleomycin , DNA Glycosylases , Disease Models, Animal , Macrophages , Mitophagy , Protein Kinases , Pulmonary Fibrosis , Animals , Mitophagy/drug effects , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Mice , Macrophages/metabolism , Protein Kinases/metabolism , Bleomycin/adverse effects , Male , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Oxidative Stress/drug effects , Mice, Inbred C57BL , Macrophage Activation , Humans , Quinazolinones
19.
Cancer Sci ; 115(7): 2286-2300, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38680094

ABSTRACT

SNHG3, a long noncoding RNA (lncRNA), has been linked to poor outcomes in patients with liver hepatocellular carcinoma (LIHC). In this study, we found that SNHG3 was overexpressed in LIHC and associated with poor outcomes in patients with LIHC. Functional assays, including colony formation, spheroid formation, and in vivo assays showed that SNHG3 promoted stemness of cancer stem cells (CSC) and tumor growth in vivo by interacting with microRNA-502-3p (miR-502-3p). miR-502-3p inhibitor repressed the tumor-suppressing effects of SNHG3 depletion. Finally, by RNA pull-down, dual-luciferase reporter assay, m6A methylation level detection, and m6A-IP-qPCR assays, we found that miR-502-3p targeted YTHDF3 to regulate the translation of integrin alpha-6 (ITGA6) and targeted HBXIP to inhibit the m6A modification of ITGA6 through methyltransferase-like 3 (METTL3). Our study revealed that SNHG3 controls the YTHDF3/ITGA6 and HBXIP/METTL3/ITGA6 pathways by repressing miR-502-3p expression to sustain the self-renewal properties of CSC in LIHC.


Subject(s)
Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Integrin alpha6 , Liver Neoplasms , MicroRNAs , Neoplastic Stem Cells , RNA, Long Noncoding , Animals , Female , Humans , Male , Mice , Middle Aged , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Integrin alpha6/metabolism , Integrin alpha6/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
20.
Clin Chim Acta ; 558: 119683, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38643817

ABSTRACT

BACKGROUND AND AIM: Early neurological deterioration (END) is a common complication of cerebral infarction and a significant contributor to poor prognosis. Our study aimed to investigate the predictive value of interleukin-9 (IL-9) and interleukin-11 (IL-11) in relation to the occurrence of END in patients with cerebral infarction. MATERIALS AND METHODS: 102 patients with cerebral infarction and 64 healthy controls were collected. Patients were categorized into two groups based on the development of END following admission: the END group (n = 44) and the non-END group (n = 58). Enzyme-linked immunosorbent assay was used to determine the serum levels of IL-9, IL-11, and BDNF. RESULTS: Serum IL-9 was higher and IL-11 lower in the END group than those in the non-END group (P < 0.01). IL-9 correlated positively with NIHSS score (r = 0.627) and infarction volume (r = 0.686), while IL-11 correlated negatively (r = -0.613, -0.679, respectively). Logistic regression identified age, NIHSS score, and IL-9 as risk factors (P < 0.01), and IL-11 as protective (P < 0.01). Combined IL-9 and IL-11 had an ROC curve area of 0.849. BDNF correlated negatively with IL-9 (r = -0.703) and positively with IL-11 (r = 0.711). CONCLUSION: Serum IL-9 and IL-11 levels can predict the occurrence of END in patient with cerebral infarction and are correlated with serum BDNF levels.


Subject(s)
Cerebral Infarction , Interleukin-11 , Interleukin-9 , Humans , Cerebral Infarction/blood , Male , Female , Interleukin-11/blood , Aged , Interleukin-9/blood , Middle Aged , Brain-Derived Neurotrophic Factor/blood , Case-Control Studies , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL