Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
World J Clin Cases ; 12(17): 3105-3122, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38898844

ABSTRACT

BACKGROUND: Malancao (MLC) is a traditional Chinese medicine with a long history of utilization in treating ulcerative colitis (UC). Nevertheless, the precise molecular mechanisms underlying its efficacy remain elusive. This study leveraged ultra-high-performance liquid chromatography coupled with exactive mass spectrometry (UHPLC-QE-MS), network pharmacology, molecular docking (MD), and gene microarray analysis to discern the bioactive constituents and the potential mechanism of action of MLC in UC management. AIM: To determine the ingredients related to MLC for treatment of UC using multiple databases to obtain potential targets for fishing. METHODS: This research employs UHPLC-QE-MS for the identification of bioactive compounds present in MLC plant samples. Furthermore, the study integrates the identified MLC compound-related targets with publicly available databases to elucidate common drug disease targets. Additionally, the R programming language is utilized to predict the central targets and molecular pathways that MLC may impact in the treatment of UC. Finally, MD are conducted using AutoDock Vina software to assess the affinity of bioactive components to the main targets and confirm their therapeutic potential. RESULTS: Firstly, through a comprehensive analysis of UHPLC-QE-MS data and public database resources, we identified 146 drug-disease cross targets related to 11 bioactive components. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis highlighted that common disease drug targets are primarily involved in oxidative stress management, lipid metabolism, atherosclerosis, and other processes. They also affect AGE-RAGE and apoptosis signaling pathways. Secondly, by analyzing the differences in diseases, we identified key research targets. These core targets are related to 11 active substances, including active ingredients such as quercetin and luteolin. Finally, MD analysis revealed the stability of compound-protein binding, particularly between JUN-Luteolin, JUN-Quercetin, HSP90AA1-Wogonin, and HSP90AA1-Rhein. Therefore, this suggests that MLC may help alleviate intestinal inflammation in UC, restore abnormal lipid accumulation, and regulate the expression levels of core proteins in the intestine. CONCLUSION: The utilization of MLC has demonstrated notable therapeutic efficacy in the management of UC by means of the compound target interaction pathway. The amalgamation of botanical resources, metabolomics, natural products, MD, and gene chip technology presents a propitious methodology for investigating therapeutic targets of herbal medicines and discerning novel bioactive constituents.

2.
Polymers (Basel) ; 16(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611210

ABSTRACT

Temperature and humidity coupling has a more significant effect on the failure properties of bonded joints than a single factor, and there is not enough research on this. In this paper, joints bonded with strong toughness structural adhesives are selected for the experimental analysis of joints aged for 240 h, 480 h, and 720 h at temperatures of 40 °C and 60 °C and a humidity of 95% and 100%. The sequential double Fick's model was used to fit the water absorption of the joints, and the comparison yielded that the water absorption of the adhesive was in accordance with Fick's law. The quasi-static tensile tests revealed that the reduction in mechanical properties of the joints was positively correlated with the moisture content in the environment, while the competing mechanisms of post-temperature curing and hydroplasticization resulted in a slight increase in the failure strength and energy uptake of the aged joints, which is in agreement with the experimental results of the Fourier infrared spectroscopy. A combination of macroscopic failure sections and scanning electron microscope (SEM) images yielded that the failure mode of the joints changed from cohesive failure to interfacial failure with increasing ageing time. In addition, reliability analyses for the fatigue testing of joints are expected to provide guidance for the life design of bonding technology in the vehicle service temperature range.

3.
JACS Au ; 4(4): 1591-1604, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665654

ABSTRACT

P450 NascB catalyzes the coupling of cyclo-(l-tryptophan-l-proline) (1) to generate (-)-naseseazine C (2) through intramolecular C-N bond formation and intermolecular C-C coupling. A thorough understanding of its catalytic mechanism is crucial for the engineering or design of P450-catalyzed C-N dimerization reactions. By employing MD simulations, QM/MM calculations, and enhanced sampling, we assessed various mechanisms from recent works. Our study demonstrates that the most favorable pathway entails the transfer of a hydrogen atom from N7-H to Cpd I. Subsequently, there is a conformational change in the substrate radical, shifting it from the Re-face to the Si-face of N7 in Substrate 1. The Si-face conformation of Substrate 1 is stabilized by the protein environment and the π-π stacking interaction between the indole ring and heme porphyrin. The subsequent intermolecular C3-C6' bond formation between Substrate 1 radical and Substrate 2 occurs via a radical attack mechanism. The conformational switch of the Substrate 1 radical not only lowers the barrier of the intermolecular C3-C6' bond formation but also yields the correct stereoselectivity observed in experiments. In addition, we evaluated the reactivity of the ferric-superoxide species, showing it is not reactive enough to initiate the hydrogen atom abstraction from the indole NH group of the substrate. Our simulation provides a comprehensive mechanistic insight into how the P450 enzyme precisely controls both the intramolecular C-N cyclization and intermolecular C-C coupling. The current findings align with the available experimental data, emphasizing the pivotal role of substrate dynamics in governing P450 catalysis.

4.
Nat Commun ; 15(1): 1431, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365864

ABSTRACT

Small molecules with conformationally rigid, three-dimensional geometry are highly desirable in drug development, toward which a direct, simple-to-complexity synthetic logic is still of considerable challenges. Here, we report intermolecular aza-[2 + 2] photocycloaddition (the aza-Paternò-Büchi reaction) of indole that facilely assembles planar building blocks into ladder-shape azetidine-fused indoline pentacycles with contiguous quaternary carbons, divergent head-to-head/head-to-tail regioselectivity, and absolute exo stereoselectivity. These products exhibit marked three-dimensionality, many of which possess 3D score values distributed in the highest 0.5% region with reference to structures from DrugBank database. Mechanistic studies elucidated the origin of the observed regio- and stereoselectivities, which arise from distortion-controlled C-N coupling scenarios. This study expands the synthetic repertoire of energy transfer catalysis for accessing structurally intriguing architectures with high molecular complexity and underexplored topological chemical space.

5.
Mol Neurobiol ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37989985

ABSTRACT

Whether epigenetic modifications participate in the cell apoptosis after ischemic stroke remains unclear. Histone 3 tri-methylation at lysine 27 (H3K27me3) is a histone modification that leads to gene silencing and is involved in the pathogenesis of ischemic stroke. Since the expression of many antiapoptotic genes is inhibited in the ischemic brains, here we aimed to offer an epigenetic solution to cell apoptosis after stroke by reversing H3K27me3 levels after ischemia. GSK-126, a specific inhibitor of enhancer of zeste homolog 2 (EZH2), significantly decreased H3K27me3 levels and inhibited middle cerebral artery occlusion (MCAO) induced and oxygen glucose deprivation (OGD) induced cell apoptosis. Moreover, GSK-126 attenuated the apoptosis caused by oxidative stress, excitotoxicity, and excessive inflammatory responses in vitro. The role of H3K27me3 in regulating of the expression of the antiapoptotic molecule B cell lymphoma-2 like 1 (Bcl2l1) explained the antiapoptotic effect of GSK-126. In conclusion, we found that GSK-126 could effectively protect brain cells from apoptosis after cerebral ischemia, and this role of GSK-126 is closely related to an axis that regulates Bcl2l1 expression, beginning with the regulation of EZH2-dependent H3K27me3 modification.

6.
J. physiol. biochem ; 79(4): 685-693, nov. 2023.
Article in English | IBECS | ID: ibc-227545

ABSTRACT

Neuronal death occurs in various physiological and pathological processes, and apoptosis, necrosis, and ferroptosis are three major forms of neuronal death. Neuronal apoptosis, necrosis, and ferroptosis are widely identified to involve the progress of stroke, Parkinson’s disease, and Alzheimer’s disease. A growing body of evidence has pointed out that neuronal death is tightly associated with expression of related genes and alteration of signaling molecules. In addition, recently, epigenetics has been increasingly focused on as a vital regulatory mechanism for neuronal apoptosis, necrosis, and ferroptosis, providing a new direction for treating nervous system diseases. Moreover, growing researches suggest that histone methylation or demethylation is involved in the processes of neuronal apoptosis, necrosis, and ferroptosis. These researches may imply that studying the potential roles of histone methylation is essential for treating the nervous system diseases. Here, we review potential roles of histone methylation and demethylation in neuronal death, which may give us a new direction in treating the nervous system diseases. (AU)


Subject(s)
Humans , Histones , Nervous System Diseases/pathology , Cell Death/physiology , Methylation , Necrosis
7.
Transpl Immunol ; 81: 101941, 2023 12.
Article in English | MEDLINE | ID: mdl-37866673

ABSTRACT

BACKGROUND: Historically, due to the lack of distinct clinical symptoms, Alport syndrome, a hereditary kidney disease prevalent in children and a leading cause of kidney failure, has often been misdiagnosed as other kidney conditions. CASE DESCRIPTION: This article presents a comprehensive review and analysis of clinical data concerning a child diagnosed with Alport syndrome, where nephrotic syndrome served as the primary manifestation. The male child in this case exhibited symptoms starting at the age of 6, initially diagnosed as nephrotic syndrome. Consequently, oral steroid medication was administered, proving ineffective. Due to persistent proteinuria and microscopic hematuria, a renal biopsy was performed. Immunofluorescence staining revealed no abnormal expression of the α3, α4, and α5 chains of type IV collagen. Notably, electron microscopy revealed the basement membrane to be partially torn and arachnoid. Genetic testing indicated a hemizygous COL4A5 acceptor-splice-site mutation c.4707-1(IVS50)G > A, inherited from his mother. CONCLUSION: This specific mutated locus, being the first of its kind reported, adds valuable information to the existing gene mutation spectrum of Alport syndrome. Consequently, it emphasizes the importance for clinicians to deepen their understanding of rare kidney diseases, contributing to enhanced diagnostic accuracy and improved patient care.


Subject(s)
Nephritis, Hereditary , Nephrotic Syndrome , Child , Male , Humans , Nephritis, Hereditary/diagnosis , Nephritis, Hereditary/drug therapy , Nephritis, Hereditary/genetics , Nephrotic Syndrome/diagnosis , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/metabolism , Kidney/pathology , Basement Membrane/metabolism , Basement Membrane/pathology , Collagen Type IV/genetics , Collagen Type IV/metabolism
8.
J Physiol Biochem ; 79(4): 685-693, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37544979

ABSTRACT

Neuronal death occurs in various physiological and pathological processes, and apoptosis, necrosis, and ferroptosis are three major forms of neuronal death. Neuronal apoptosis, necrosis, and ferroptosis are widely identified to involve the progress of stroke, Parkinson's disease, and Alzheimer's disease. A growing body of evidence has pointed out that neuronal death is tightly associated with expression of related genes and alteration of signaling molecules. In addition, recently, epigenetics has been increasingly focused on as a vital regulatory mechanism for neuronal apoptosis, necrosis, and ferroptosis, providing a new direction for treating nervous system diseases. Moreover, growing researches suggest that histone methylation or demethylation is involved in the processes of neuronal apoptosis, necrosis, and ferroptosis. These researches may imply that studying the potential roles of histone methylation is essential for treating the nervous system diseases. Here, we review potential roles of histone methylation and demethylation in neuronal death, which may give us a new direction in treating the nervous system diseases.


Subject(s)
Histones , Nervous System Diseases , Humans , Methylation , Cell Death/physiology , Necrosis , Nervous System Diseases/pathology
9.
J Laparoendosc Adv Surg Tech A ; 33(8): 750-755, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37307060

ABSTRACT

Background: Complex ventral hernia remains a challenging situation for any surgeon. In this study, our aim was to analyze the effect of laparoscopic intraperitoneal onlay mesh (IPOM) repair in the treatment of complex abdominal wall hernia, with the assistance of preoperative progressive pneumoperitoneum (PPP) and botulinum toxin A (BTA). Methods: In this retrospective study, we included 13 patients with complex ventral hernia between May 2021 and December 2022. All patients undergoing PPP and BTA protocol before hernia repair. The length of abdominal wall muscles and abdominal circumference were measured from CT scan. All hernias were repaired with laparoscopic or laparoscopic-assisted IPOM. Results: Thirteen patients received PPP and BTA injections. PPP and BTA administration time was over 8.8 ± 2.5 days. Before and after PPP and BTA, imaging showed that the length of lateral muscle on each side increased from 14.3 to 17.4 cm (P < .05). The abdominal circumference increased from 81.8 to 87.9 cm (P < .05). Complete fascial closure was obtained in 13 patients (100%), and no patient experienced postoperative abdominal hypertension and ventilatory support. No patient suffered from recurrent hernia to date. Conclusions: Preoperative PPP combined with BTA injection plays a role similar to component separation technique, avoids the abdominal hypertension after laparoscopic IPOM repair of complex ventral hernia.


Subject(s)
Botulinum Toxins, Type A , Hernia, Ventral , Incisional Hernia , Laparoscopy , Pneumoperitoneum , Humans , Surgical Mesh , Retrospective Studies , Abdominal Muscles/surgery , Hernia, Ventral/surgery , Laparoscopy/methods , Postoperative Complications/surgery , Herniorrhaphy/methods , Recurrence , Incisional Hernia/surgery
10.
Natl Sci Rev ; 10(5): nwac034, 2023 May.
Article in English | MEDLINE | ID: mdl-37265505

ABSTRACT

The onset of various kidney diseases has been reported after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. However, detailed clinical and pathological features are lacking. We screened and analyzed patients with newly diagnosed kidney diseases after inactivated SARS-CoV-2 vaccination in Peking University First Hospital from January 2021 to August 2021, and compared them with the reported cases in the literature. We obtained samples of blood, urine and renal biopsy tissues. Clinical and laboratory information, as well as light microscopy, immunostaining and ultrastructural observations, were described. The SARS-CoV-2 spike protein and nucleoprotein were stained using the immunofluorescence technique in the kidney biopsy samples. SARS-CoV-2 specific antibodies were tested using magnetic particle chemiluminescence immunoassay. The study group included 17 patients with a range of conditions including immune-complex-mediated kidney diseases (IgA nephropathy, membranous nephropathy and lupus nephritis), podocytopathy (minimal change disease and focal segmental glomerulosclerosis) and others (antineutrophil-cytoplasmic-antibody-associated vasculitis, anti-glomerular basement membrane nephritis, acute tubulointerstitial nephritis and thrombotic microangiopathy). Seven patients (41.18%) developed renal disease after the first dose and ten (58.82%) after the second dose. The kidney disease spectrum as well as clinicopathological features are similar across different types of SARS-CoV-2 vaccines. We found no definitive evidence of SARS-CoV-2 spike protein or nucleoprotein deposition in the kidney biopsy samples. Seropositive markers implicated abnormal immune responses in predisposed individuals. Treatment and follow-up (median = 86 days) showed that biopsy diagnosis informed treatment and prognosis in all patients. In conclusion, we observed various kidney diseases following SARS-CoV-2 vaccine administration, which show a high consistency across different types of SARS-CoV-2 vaccines. Our findings provide evidence against direct vaccine protein deposition as the major pathomechanism, but implicate abnormal immune responses in predisposed individuals. These findings expand our understanding of SARS-CoV-2 vaccine renal safety.

11.
Front Immunol ; 14: 1083598, 2023.
Article in English | MEDLINE | ID: mdl-36814917

ABSTRACT

Introduction: Cystitis glandularis (CG) is a rare chronic bladder hyperplastic disease that mainly manifests by recurrent frequent urination, dysuria and gross hematuria. The current lack of unified diagnosis and treatment criteria makes it essential to comprehensively describe the inflammatory immune environment in CG research. Methods: Here, we performed scRNA-sequencing in CG patients for the first time, in which four inflamed tissues as well as three surrounding normal bladder mucosa tissues were included. Specifically, we isolated 18,869 cells to conduct bioinformatic analysis and performed immunofluorescence experiments. Results: Our genetic results demonstrate that CG does not have the classic chromosomal variation observed in bladder tumors, reveal the specific effects of TNF in KRT15 epithelial cells, and identify a new population of PIGR epithelial cells with high immunogenicity. In addition, we confirmed the activation difference of various kinds of T cells during chronic bladder inflammation and discovered a new group of CD27-Switch memory B cells expressing a variety of immunoglobulins. Discussion: CG was regarded as a rare disease and its basic study is still weak.Our study reveals, for the first time, the different kinds of cell subgroups in CG and provides the necessary basis for the clinical treatment of cystitis glandularis. Besides, our study significantly advances the research on cystitis glandularis at the cellular level and provides a theoretical basis for the future treatment of cystitis glandularis.


Subject(s)
Cystitis , Urinary Bladder Neoplasms , Humans , Cystitis/diagnosis , Urinary Bladder , Urinary Bladder Neoplasms/pathology , Mucous Membrane/pathology , Sequence Analysis, RNA , Tumor Microenvironment
12.
Angew Chem Int Ed Engl ; 62(16): e202219034, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36789864

ABSTRACT

Herein, we disclose the highly enantioselective oxidative cross-coupling of 3-hydroxyindole esters with various nucleophilic partners as catalyzed by copper efflux oxidase. The biocatalytic transformation delivers functionalized 2,2-disubstituted indolin-3-ones with excellent optical purity (90-99 % ee), which exhibited anticancer activity against MCF-7 cell lines, as shown by preliminary biological evaluation. Mechanistic studies and molecular docking results suggest the formation of a phenoxyl radical and enantiocontrol facilitated by a suited enzyme chiral pocket. This study is significant with regard to expanding the catalytic repertoire of natural multicopper oxidases as well as enlarging the synthetic toolbox for sustainable asymmetric oxidative coupling.


Subject(s)
Copper , Oxidoreductases , Copper/metabolism , Stereoisomerism , Molecular Docking Simulation , Oxidoreductases/metabolism , Ceruloplasmin/metabolism , Indoles
14.
Mol Biol Rep ; 50(3): 2545-2557, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36611117

ABSTRACT

BACKGROUND: Neuronal apoptosis is the main cause for the disabilities and deaths of patients suffered with stroke. Neuroprotectants are clinically used to reduce neuronal apoptosis in ischemic stroke. However, the current neuroprotectants have multiple limitations. Myricetin is beneficial for multiple neurodegenerative diseases, but the role of myricetin as a neuroprotective agent in ischemic stroke is still not fully understood. METHODS AND RESULTS: Middle cerebral artery occlusion, Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and Western blots were used to explore the anti-apoptotic effects of myricetin in vivo. Flow cytometry, Western blots and Ca2+ staining were used to study the neuroprotective effects of myricetin in vitro. In this study, we first demonstrated that myricetin reduced neuronal apoptosis after ischemia in vivo and in vitro. And, among the factors of apoptosis after ischemic stroke, excitotoxicity, oxidative stress and inflammation-induced apoptosis can be alleviated by myricetin. Moreover, we further demonstrated that myricetin was able to improve neuronal intrinsic apoptosis by inhibiting the phosphorylation of extracellular signal-regulated kinase in the oxygen and glucose deprivation in vitro. CONCLUSIONS: Summarily, our results support myricetin as a novel neuroprotectant for the prevention or treatment of ischemic stroke via MAPK-ERK signaling pathway.


Subject(s)
Brain Ischemia , Ischemic Stroke , Neuroprotective Agents , Reperfusion Injury , Stroke , Humans , MAP Kinase Signaling System , Neuroprotective Agents/pharmacology , Stroke/drug therapy , Apoptosis , Brain Ischemia/drug therapy
15.
J Hum Genet ; 68(1): 17-23, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36274106

ABSTRACT

Dual-hereditary jaundice (Dubin-Johnson syndrome (DJS) and Gilbert's syndrome (GS)) is a rare clinical entity resulting from defects of the ATP binding cassette subfamily C member 2 (ABCC2) and UDP glucuronosyltransferase family 1 member A1 (UGT1A1) genes with autosomal recessive inheritance. In this study, we aimed to investigate the mutation profiles and characterize the phenotypes in a Han Chinese family with DJS and GS. Genetic screening for variants in the ABCC2 and UGT1A1, immunohistochemistry for expression of ABCC2, and histopathological examination were carried out. The proband and his brother had unconjugated and conjugated hyperbilirubinemia after birth. The proband's sister had only conjugated hyperbilirubinemia after birth. The proband developed into pleural effusions and ascites, pericardial thickening, intrahepatic and extrahepatic biliary duct dilatation, and enlarged gallbladder at age 50. Hepatocellular carcinoma occurred in the proband's brother at age 46. Seven compound defects of the ABCC2 gene [c.2414delG, p.(Ile1489Gly), p.(Thr1490Pro), and p.(Ile1491Gln)] and the UGT1A1 gene (c.-3279T>G, p.(Gly71Arg), and p.(Pro451Leu)) were identified in family members. Accumulation of pigment in hepatocytes characteristic of that in DJS was present in the proband and his brother. Expression of ABCC2 protein was markedly diminished in the patient's liver. Our results show a different genetic profile of DJS and GS in a Han Chinese family, indicating a more complex pattern of dual-hereditary jaundice among different populations. The present study illuminates the underpinnings of DJS and GS and extends the mutation profiles and phenotypes of these two syndromes in dual-hereditary jaundice.


Subject(s)
Gilbert Disease , Jaundice, Chronic Idiopathic , Jaundice , Humans , Male , East Asian People , Gilbert Disease/diagnosis , Gilbert Disease/genetics , Glucuronosyltransferase/genetics , Hyperbilirubinemia , Jaundice/genetics , Jaundice, Chronic Idiopathic/genetics , Jaundice, Chronic Idiopathic/pathology , Multidrug Resistance-Associated Protein 2 , Mutation
17.
Mol Carcinog ; 62(2): 261-276, 2023 02.
Article in English | MEDLINE | ID: mdl-36345938

ABSTRACT

To identify Musashi2 as an effective biomarker regulated by the TGF-ß/Smad2/3 signaling pathway for the precise diagnosis and treatment of colorectal cancer (CRC) through bioinformatic tools and experimental verification. The Cancer Genome Atlas, Timer, and Kaplan-Meier analyses were performed to clarify the expression of Musashi2 and its influence on the prognosis of CRC. Transforming growth factor beta 1 (TGF-ß1) was used to activate the TGF-ß/Smad2/3 signaling pathway to identify whether it could regulate the expression and function of Musashi2. Western blot analysis and quantitative PCR analyses were conducted to verify the expression of Musashi2. Cell counting kit-8 (CCK8), EdU, wound healing, and Transwell assays were conducted to reveal the role of Musashi2 in the proliferation, migration, and invasion of CRC. Musashi2 was upregulated in CRC and promoted proliferation and metastasis. TGF-ß1 increased the expression of Musashi2, while the antagonist inducer of type II TGF-ß receptor degradation-1 (ITD-1) decreased the expression. CCK8 and EdU assays demonstrated that inhibition of Musashi2 or use of ITD-1 lowered proliferation ability. The Transwell and wound healing assays showed that the migration and invasion abilities of CRC cells could be regulated by Musashi2. The above functions could be enhanced by TGF-ß1 by activating the TGF-ß/Smad2/3 signaling pathway and reversed by ITD-1. A positive correlation was found between Musashi2 and the TGF-ß/Smad2/3 signaling pathway. TGF-ß1 activates the TGF-ß/Smad2/3 pathway to stimulate the expression of Musashi2, which promotes the progression of CRC. Musashi2 might become a target gene for the development of new antitumor drugs.


Subject(s)
Colorectal Neoplasms , Transforming Growth Factor beta , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Receptor, Transforming Growth Factor-beta Type II , Signal Transduction , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad2 Protein/pharmacology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
18.
Commun Med (Lond) ; 2(1): 151, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36434092

ABSTRACT

BACKGROUND: People living with chronic disease, particularly seniors (≥60 years old), made up of most severe symptom and death cases among SARS-CoV-2 infected patients. However, they are lagging behind in the national COVID-19 vaccination campaign in China due to the uncertainty of vaccine safety and effectiveness. Safety and immunogenicity data of COVID-19 vaccines in people with underlying medical conditions are needed to address the vaccine hesitation in this population. METHODS: We included participants (≥40 years old) who received two doses of CoronaVac inactivated vaccines (at a 3-5 week interval) and were healthy or had at least one of 6 common chronic diseases. The incidence of adverse events after vaccination was monitored. Vaccine immunogenicity was studied by determining neutralizing antibodies and SARS-CoV-2-specific T cell responses post vaccination. RESULTS: Here we show that chronic diseases are associated with a higher rate of mild fatigue following the first dose of CoronaVac. By day 14-28 post vaccination, the neutralizing antibody level shows no significant difference between disease groups and healthy controls, except for people with coronary artery disease (p = 0.0287) and chronic respiratory disease (p = 0.0416), who show moderate reductions. Such differences diminish by day 90 and 180. Most people show detectable SARS-CoV-2-specific T cell responses at day 90 and day 180 without significant differences between disease groups and healthy controls. CONCLUSIONS: Our results highlight the comparable safety, immunogenicity and cellular immunity memory of CoronaVac in seniors and people living with chronic diseases. This data should reduce vaccine hesitancy in this population.


People living with chronic diseases, particularly those over the age of 60, are more likely to have severe symptoms and die following SARS-CoV-2 infection. However, many have not been vaccinated during the national COVID-19 vaccination campaign in China due to concerns about vaccine safety and effectiveness. Here we show that the inactivated COVID-19 vaccine, CoronaVac, is as safe in older people with chronic diseases as it is for healthy people. Also, only slightly differences are seen in the immune response of people with diseases compared to healthy people. Overall, our results highlight that the CoronaVac vaccine is safe and effective in people living with chronic diseases.

19.
World J Diabetes ; 13(11): 986-1000, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36437866

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is the driving force of blindness in patients with type 2 diabetes mellitus (T2DM). DR has a high prevalence and lacks effective therapeutic strategies, underscoring the need for early prevention and treatment. Yunnan province, located in the southwest plateau of China, has a high pre-valence of DR and an underdeveloped economy. AIM: To build a clinical prediction model that will enable early prevention and treatment of DR. METHODS: In this cross-sectional study, 1654 Han population with T2DM were divided into groups without (n = 826) and with DR (n = 828) based on fundus photography. The DR group was further subdivided into non-proliferative DR (n = 403) and proliferative DR (n = 425) groups. A univariate analysis and logistic regression analysis were conducted and a clinical decision tree model was constructed. RESULTS: Diabetes duration ≥ 10 years, female sex, standing- or supine systolic blood pressure (SBP) ≥ 140 mmHg, and cholesterol ≥ 6.22 mmol/L were risk factors for DR in logistic regression analysis (odds ratio = 2.118, 1.520, 1.417, 1.881, and 1.591, respectively). A greater severity of chronic kidney disease (CKD) or hemoglobin A 1c increased the risk of DR in patients with T2DM. In the decision tree model, diabetes duration was the primary risk factor affecting the occurrence of DR in patients with T2DM, followed by CKD stage, supine SBP, standing SBP, and body mass index (BMI). DR classification outcomes were obtained by evaluating standing SBP or BMI according to the CKD stage for diabetes duration < 10 years and by evaluating CKD stage according to the supine SBP for diabetes duration ≥ 10 years. CONCLUSION: Based on the simple and intuitive decision tree model constructed in this study, DR classification outcomes were easily obtained by evaluating diabetes duration, CKD stage, supine or standing SBP, and BMI.

20.
World J Gastrointest Oncol ; 14(10): 1981-2003, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36310708

ABSTRACT

BACKGROUND: Cuproptosis has recently been considered a novel form of programmed cell death. To date, long-chain non-coding RNAs (lncRNAs) crucial to the regulation of this process remain unelucidated. AIM: To identify lncRNAs linked to cuproptosis in order to estimate patients' prognoses for hepatocellular carcinoma (HCC). METHODS: Using RNA sequence data from The Cancer Genome Atlas Live Hepatocellular Carcinoma (TCGA-LIHC), a co-expression network of cuproptosis-related genes and lncRNAs was constructed. For HCC prognosis, we developed a cuproptosis-related lncRNA signature (CupRLSig) using univariate Cox, lasso, and multivariate Cox regression analyses. Kaplan-Meier analysis was used to compare overall survival among high- and low-risk groups stratified by median CupRLSig risk score. Furthermore, comparisons of functional annotation, immune infiltration, somatic mutation, tumor mutation burden (TMB), and pharmacologic options were made between high- and low-risk groups. RESULTS: Three hundred and forty-three patients with complete follow-up data were recruited in the analysis. Pearson correlation analysis identified 157 cuproptosis-related lncRNAs related to 14 cuproptosis genes. Next, we divided the TCGA-LIHC sample into a training set and a validation set. In univariate Cox regression analysis, 27 LncRNAs with prognostic value were identified in the training set. After lasso regression, the multivariate Cox regression model determined the identified risk equation as follows: Risk score = (0.2659 × PICSAR expression) + (0.4374 × FOXD2-AS1 expression) + (-0.3467 × AP001065.1 expression). The CupRLSig high-risk group was associated with poor overall survival (hazard ratio = 1.162, 95%CI = 1.063-1.270; P < 0.001) after the patients were divided into two groups depending upon their median risk score. Model accuracy was further supported by receiver operating characteristic and principal component analysis as well as the validation set. The area under the curve of 0.741 was found to be a better predictor of HCC prognosis as compared to other clinicopathological variables. Mutation analysis revealed that high-risk combinations with high TMB carried worse prognoses (median survival of 30 mo vs 102 mo of low-risk combinations with low TMB group). The low-risk group had more activated natural killer cells (NK cells, P = 0.032 by Wilcoxon rank sum test) and fewer regulatory T cells (Tregs, P = 0.021) infiltration than the high-risk group. This finding could explain why the low-risk group has a better prognosis. Interestingly, when checkpoint gene expression (CD276, CTLA-4, and PDCD-1) and tumor immune dysfunction and rejection (TIDE) scores are considered, high-risk patients may respond better to immunotherapy. Finally, most drugs commonly used in preclinical and clinical systemic therapy for HCC, such as 5-fluorouracil, gemcitabine, paclitaxel, imatinib, sunitinib, rapamycin, and XL-184 (cabozantinib), were found to be more efficacious in the low-risk group; erlotinib, an exception, was more efficacious in the high-risk group. CONCLUSION: The lncRNA signature, CupRLSig, constructed in this study is valuable in prognostic estimation of HCC. Importantly, CupRLSig also predicts the level of immune infiltration and potential efficacy of tumor immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...