Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(20): e202402987, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38436516

ABSTRACT

Zinc-based aqueous batteries (ZABs) are attracting extensive attention due to the low cost, high capacity, and environmental benignity of the zinc anode. However, their application is still hindered by the undesired zinc dendrites. Despite Zn-surface modification being promising in relieving dendrites, a thick separator (i.e. glass fiber, 250-700 µm) is still required to resist the dendrite puncture, which limits volumetric energy density of battery. Here, we pivot from the traditional interphase plus extra separator categories, proposing an all-in-one ligand buffer layer (ca. 20 µm) to effectively modulate the Zn2+ transfer and deposition behaviors proved by in situ electrochemical digital holography. Experimental characterizations and density functional theory simulations further reveal that the catechol groups in the buffer layer can accelerate the Zn2+ reduction reaction (ZRR) through the electron-donating p-π conjugation effect, decreasing the negative charge in the coordination environment. Without extra separators, the elaborated system endows low polarization below 28.2 mV, long lifespan of 4950 h at 5 mA cm-2 in symmetric batteries, and an unprecedented volumetric energy density of 99.2 Wh L-1 based on the whole pouch cells. The concomitantly "separator-free" and "dendrite-free" conjugation effect with an accelerated ZRR process could foster the progression of metallic anodes and benefit energetic aqueous batteries.

2.
J Am Chem Soc ; 146(9): 6199-6208, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38394360

ABSTRACT

A reliable solid electrolyte interphase (SEI) on the metallic Zn anode is imperative for stable Zn-based aqueous batteries. However, the incompatible Zn-ion reduction processes, scilicet simultaneous adsorption (capture) and desolvation (repulsion) of Zn2+(H2O)6, raise kinetics and stability challenges for the design of SEI. Here, we demonstrate a tandem chemistry strategy to decouple and accelerate the concurrent adsorption and desolvation processes of the Zn2+ cluster at the inner Helmholtz layer. An electrochemically assembled perforative mesopore SiO2 interphase with tandem hydrophilic -OH and hydrophobic -F groups serves as a Janus mesopores accelerator to boost a fast and stable Zn2+ reduction reaction. Combining in situ electrochemical digital holography, molecular dynamics simulations, and spectroscopic characterizations reveals that -OH groups capture Zn2+ clusters from the bulk electrolyte and then -F groups repulse coordinated H2O molecules in the solvation shell to achieve the tandem ion reduction process. The resultant symmetric batteries exhibit reversible cycles over 8000 and 2000 h under high current densities of 4 and 10 mA cm-2, respectively. The feasibility of the tandem chemistry is further evidenced in both Zn//VO2 and Zn//I2 batteries, and it might be universal to other aqueous metal-ion batteries.

4.
J Am Chem Soc ; 145(44): 24284-24293, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37888942

ABSTRACT

Zinc metal-based aqueous batteries (ZABs) offer a sustainable, affordable, and safe energy storage alternative to lithium, yet inevitable dendrite formation impedes their wide use, especially under long-term and high-rate cycles. How the battery can survive after dendrite formation remains an open question. Here, we pivot from conventional Zn dendrite growth suppression strategies, introducing proactive dendrite-digesting chemistry via a mesoporous Ti3C2 MXene (MesoTi3C2)-wrapped polypropylene separator. Spectroscopic characterizations and electrochemical evaluation demonstrate that MesoTi3C2, acting as an oxidant, can revive the formed dead Zn0 dendrites into electroactive Zn2+ ions through a spontaneous redox process. Density functional theory reveals that the abundant edge-Ti-O sites in our MesoTi3C2 facilitate high oxidizability and electron transfer from Zn0 dendrites compared to their in-plane counterparts. The resultant asymmetrical cell demonstrates remarkable ultralong cycle life of 2200 h at a practical current of 5 mA cm-2 with a low overpotential (<50 mV). The study reveals the unexpected edge effect of mesoporous MXenes and uncovers a new proactive dendrite-digesting chemistry to survive ZABs, albeit with inevitable dendrite formation.

5.
Food Sci Nutr ; 11(10): 6604-6615, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37823166

ABSTRACT

Puerarin (Pue) is a kind of isoflavone compound extracted from Pueraria lobata, which has significant antioxidant activity. Excessive use of acetaminophen (APAP) can cause oxidative stress in the liver and eventually lead to acute liver injury. The purpose of this study was to investigate the protective effect and the mechanism of puerarin on APAP-induced liver oxidative damage. In in vitro experiments, puerarin significantly increased the cell activity of HepG2 cells, reduced the ROS accumulation, alleviated the oxidative damage and mitochondrial dysfunction. In in vivo studies, our results showed that puerarin enhanced antioxidant activity and alleviated histopathological damage. Further studies showed that puerarin decreased the expression of Keap1, promoted the nuclear migration of Nrf2, and up-regulated the expression of GCLC, GCLM, HO-1 and NQO1. This study demonstrated that puerarin can protect APAP-induced liver injury via alleviating oxidative stress and mitochondrial dysfunction by affecting the nuclear migration of Nrf2 via inhibiting Keap1.

6.
JACS Au ; 3(8): 2107-2116, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37654583

ABSTRACT

Zn-based aqueous batteries (ZABs) hold great promise for large-scale energy storage applications due to the merits of intrinsic safety and low cost. Nevertheless, the thorny issues of metallic Zn anodes, including dendrite growth and parasitic side reactions, have severely limited the application of ZABs. Despite the encouraging improvements for stabilizing Zn anodes through surface modification, electrolyte optimization, and structural design, fundamentally addressing the inherent thermodynamics and kinetics obstacles of Zn anodes remains crucial in realizing reliable ZABs with ultrahigh efficiency, capacity, and cyclability. The target of this perspective is to elucidate the prominent status of Zn metal anode electrochemistry first from the perspective of zincophilicity and zincophobicity. Recent progress in ZABs is critically appraised for addressing the key issues, with special emphasis on the trade-off between zincophilic and zincophobic electrochemistry. Challenges and prospects for further exploration of a reliable Zn anode are presented, which are expected to boost in-depth research and practical applications of advanced ZABs.

7.
J Am Chem Soc ; 145(19): 10880-10889, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37130056

ABSTRACT

Tin is promising for aqueous batteries (ABs) due to its multiple electrons' reactions, high corrosion resistance, large hydrogen overpotential, and excellent environmental compatibility. However, restricted to the high thermodynamic barrier and the poor electrochemical kinetics, efficient alkaline Sn plating/stripping at facile conditions has not yet been realized. Here, for the first time, we demonstrate a highly reversible stannite-ion electrochemistry and construct a novel paradigm of high-energy Sn-based ABs. Combined spectroscopic characterization, electrochemical evaluation, and theoretical computation reveal the thermodynamic merits with a low reaction energy barrier and feasible H2O participation in Sn-ion reduction as well as the kinetic merits with fastened surface charge transfer and SnO22- diffusion. The resultant alkaline Sn anode delivers a low potential of -1.07 V vs Hg/HgO, a specific capacity of 450 mA h g-1, a Coulombic efficiency of near 100%, superb rate capability at 45.5 A g-1, and excellent cycling durability without dendrite and dead Sn. As a proof of concept, we developed new high-energy Sn-based ABs, including 1.45 V Sn-Ni with 314 W h kg-1 (58 kW kg-1 and over 15,000 cycles) and 1.0 V Sn-air with 420 W h kg-1 (lifespan over 1900 h), on the basis of masses from cathode and anode active materials. The findings prove the feasibility of the alkaline Sn metal anode, and the new suite of high-energy Sn-based ABs may be of immediate benefit toward safe, reliable, and affordable energy storage.

8.
Natl Sci Rev ; 10(6): nwac268, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37181097

ABSTRACT

Sulfur-based aqueous batteries (SABs) are deemed promising candidates for safe, low-cost, and high-capacity energy storage. However, despite their high theoretical capacity, achieving high reversible value remains a great challenge due to the thermodynamic and kinetics problems of elemental sulfur. Here, the reversible six-electron redox electrochemistry is constructed by activating the sulfur oxidation reaction (SOR) process of the elaborate mesocrystal NiS2 (M-NiS2). Through the unique 6e- solid-to-solid conversion mechanism, SOR efficiency can reach an unprecedented degree of ca. 96.0%. The SOR efficiency is further revealed to be closely associated with the kinetics feasibility and thermodynamic stability of the M-NiS2 intermedium in the formation of elemental sulfur. Benefiting from the boosted SOR, compared with the bulk electrode, the M-NiS2 electrode exhibits a high reversible capacity (1258 mAh g-1), ultrafast reaction kinetics (932 mAh g-1 at 12 A g-1), and long-term cyclability (2000 cycles at 20 A g-1). As a proof of concept, a new M-NiS2‖Zn hybrid aqueous battery exhibits an output voltage of 1.60 V and an energy density of 722.4 Wh kgcath-1, which opens a new opportunity for the development of high-energy aqueous batteries.

9.
Adv Mater ; 35(24): e2300053, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37060108

ABSTRACT

In the literature, Zn-Mn aqueous batteries (ZMABs) confront abnormal capacity behavior, such as capacity fluctuation and diverse "unprecedented performances." Because of the electrolyte additive-induced complexes, various charge/discharge behaviors associated with different mechanisms are being reported. However, the current performance assessment remains unregulated, and only the electrode or the electrolyte is considered. The lack of a comprehensive and impartial performance evaluation protocol for ZMABs hinders forward research and commercialization. Here, a pH clue (proton-coupled reaction) to understand different mechanisms is proposed and the capacity contribution is normalized. Then, a series of performance metrics, including rated capacity (Cr ) and electrolyte contribution ratio from Mn2+ (CfM), are systematically discussed based on diverse energy storage mechanisms. The relationship between Mn (II) ↔ Mn (III) ↔ Mn (IV) conversion chemistry and protons consumption/production is well-established. Finally, the concrete design concepts of a tunable H+ /Zn2+ /Mn2+ storage system for customized application scenarios, opening the door for the next-generation high-safety and reliable energy storage system, are proposed.

10.
Adv Mater ; 35(17): e2209288, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36787111

ABSTRACT

Poor thermodynamic stability and sluggish electrochemical kinetics of metallic Zn anode in aqueous solution greatly hamper its practical application. To solve such problems, to date, various zincophilic surface modification strategies are developed, which can facilitate reversible Zn plating/stripping behavior. However, there is still a lack of systematic and fundamental understanding regarding the metrics of thermodynamics inertia and kinetics zincophilia in selecting zincophilic sites. Herein, hetero-metallic interfaces are prioritized for the first time via optimizing different hetero metals (Fe, Co, Ni, Sn, Bi, Cu, Zn, etc.) and synthetic solvents (ethanol, ethylene glycol, n-propanol, etc.). Specifically, both theoretical simulations and experimental results suggest that this Bi@Zn interface can exhibit high efficiency owing to the thermodynamics inertia and kinetics zincophilia. A best practice for prioritizing zincophilic sites in a more practical metric is also proposed. As a proof of concept, the Bi@Zn anode delivers ultralow overpotential of ≈55 mV at a high rate of 10 mA cm-2 and stable cycle life over 4700 cycles. The elaborated "thermodynamics inertia and kinetics metalphilia" metrics for hetero-metallic interfaces can benchmark the success of other metal-based batteries.

11.
Molecules ; 29(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38202733

ABSTRACT

Brasenia schreberi is a widely consumed aquatic plant, yet the knowledge regarding its bioactive components, particularly polysaccharides, remains limited. Therefore, this study aimed to optimize the extraction process of polysaccharides from B. schreberi using the response surface method (RSM). Additionally, we characterized the polysaccharides using various methods and assessed their antioxidant capabilities both in vitro and in vivo, employing cell cultures and Caenorhabditis elegans. Furthermore, these polysaccharides were incorporated into a unique yogurt formulation. Our findings demonstrated that hot water extraction was the most suitable method for extracting polysaccharides from B. schreberi, yielding samples with high sugar content, significant antioxidant capacity, and a well-defined spatial structure. Moreover, pectinase was employed for polysaccharide digestion, achieving an enzymolysis rate of 10.02% under optimized conditions using RSM. Notably, the results indicated that these polysaccharides could protect cells from oxidative stress by reducing apoptosis. Surprisingly, at a concentration of 250 µg/mL, the polysaccharides significantly increased the survival rate of C. elegans from 31.05% to 82.3%. Further qPCR results revealed that the polysaccharides protected C. elegans by up-regulating the daf-16 gene and down-regulating mTOR and insulin pathways, demonstrating remarkable antioxidant abilities. Upon addition to the yogurt, the polysaccharides significantly enhanced the water retention, viscosity, and viability of lactic acid bacteria. These outcomes underscore the potential of polysaccharides from B. schreberi as a valuable addition to novel yogurt formulations, thereby providing additional theoretical support for the utilization of B. schreberi.


Subject(s)
Antioxidants , Caenorhabditis elegans , Animals , Antioxidants/pharmacology , Yogurt , Polysaccharides/pharmacology , Water
12.
Sci Bull (Beijing) ; 67(18): 1882-1889, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36546302

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) are promising for large-scale energy storage, but their development is plagued by inadequate cycle life. Here, for the first time, we reveal an unusual phenomenon of cathodic underpotential deposition (UPD) of Zn, which is highly irreversible and considered the origin of the inferior cycling stability of AZIBs. Combining experimental and theoretical simulation approaches, we propose that the UPD process agrees with a two-dimensional nucleation and growth model, following a thermodynamically feasible mechanism. Furthermore, the universality of Zn UPD is identified in systems, including VO2//Zn, TiO2//Zn, and SnO2//Zn. In practice, we propose and successfully implement removing cathodic Zn UPD and substantially mitigate the degradation of the battery by controlling the end-of-discharge voltage. This work provides new insights into AZIBs degradation and brings the cathodic UPD behavior of rechargeable batteries into the limelight.

13.
Sci Adv ; 8(41): eabp8960, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36240270

ABSTRACT

The diffusion-limited aggregation (DLA) of metal ion (Mn+) during the repeated solid-to-liquid (StoL) plating and liquid-to-solid (LtoS) stripping processes intensifies fatal dendrite growth of the metallic anodes. Here, we report a new solid-to-solid (StoS) conversion electrochemistry to inhibit dendrites and improve the utilization ratio of metals. In this StoS strategy, reversible conversion reactions between sparingly soluble carbonates (Zn or Cu) and their corresponding metals have been identified at the electrode/electrolyte interface. Molecular dynamics simulations confirm the superiority of the StoS process with accelerated anion transport, which eliminates the DLA and dendrites in the conventional LtoS/StoL processes. As proof of concept, 2ZnCO3·3Zn(OH)2 exhibits a high zinc utilization of ca. 95.7% in the asymmetry cell and 91.3% in a 2ZnCO3·3Zn(OH)2 || Ni-based full cell with 80% capacity retention over 2000 cycles. Furthermore, the designed 1-Ah pouch cell device can operate stably with 500 cycles, delivering a satisfactory total energy density of 135 Wh kg-1.

14.
BMC Plant Biol ; 22(1): 243, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35585490

ABSTRACT

BACKGROUND: Cinnamomum longepaniculatum (Gamble) N. Chao ex H. W. Li, whose leaves produce essential oils, is a traditional Chinese medicine and economically important tree species. In our study, two C. longepaniculatum varieties that have significantly different essential oil contents and leaf phenotypes were selected as the materials to investigate secondary metabolism. RESULT: The essential oil content and leaf phenotypes were different between the two varieties. When the results of both transcriptome and metabolomic analyses were combined, it was found that the differences were related to phenylalanine metabolic pathways, particularly the metabolism of flavonoids and terpenoids. The transcriptome results based on KEGG pathway enrichment analysis showed that pathways involving phenylpropanoids, tryptophan biosynthesis and terpenoids significantly differed between the two varieties; 11 DEGs (2 upregulated and 9 downregulated) were associated with the biosynthesis of other secondary metabolites, and 12 DEGs (2 upregulated and 10 downregulated) were related to the metabolism of terpenoids and polyketides. Through further analysis of the leaves, we detected 196 metabolites in C. longepaniculatum. The abundance of 49 (26 downregulated and 23 upregulated) metabolites differed between the two varieties, which is likely related to the differences in the accumulation of these metabolites. We identified 12 flavonoids, 8 terpenoids and 8 alkaloids and identified 4 kinds of PMFs from the leaves of C. longepaniculatum. CONCLUSIONS: The combined results of transcriptome and metabolomic analyses revealed a strong correlation between metabolite contents and gene expression. We speculate that light leads to differences in the secondary metabolism and phenotypes of leaves of different varieties of C. longepaniculatum. This research provides data for secondary metabolite studies and lays a solid foundation for breeding ideal C. longepaniculatum plants.


Subject(s)
Cinnamomum , Oils, Volatile , Cinnamomum/genetics , Cinnamomum/metabolism , Flavonoids/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Metabolome , Oils, Volatile/metabolism , Plant Breeding , Plant Leaves/genetics , Plant Leaves/metabolism , Terpenes/metabolism , Transcriptome
15.
Nano Lett ; 22(10): 4223-4231, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35507684

ABSTRACT

Zn-based aqueous batteries (ZABs) have been regarded as promising candidates for safe and large-scale energy storage in the "post-Li" era. However, kinetics and stability problems of Zn capture cannot be concomitantly regulated, especially at high rates and loadings. Herein, a hierarchical confinement strategy is proposed to design zincophilic and spatial traps through a host of porous Co-embedded carbon cages (denoted as CoCC). The zincophilic Co sites act as preferred nucleation sites with low nucleation barriers (within 0.5 mA h cm-2), and the carbon cage can further spatially confine Zn deposition (within 5.0 mA h cm-2). Theoretical simulations and in situ/ex situ structural observations reveal the hierarchical spatial confinement by the elaborated all-in-one network (within 12 mA h cm-2). Consequently, the elaborate strategy enables a dendrite-free behavior with excellent kinetics (low overpotential of ca. 65 mV at a high rate of 20 mA cm-2) and stable cycle life (over 800 cycles), pushing forward the next-generation high-performance ZABs.

16.
PeerJ ; 10: e12880, 2022.
Article in English | MEDLINE | ID: mdl-35295554

ABSTRACT

FRIZZY PANICLE (FZP), an essential gene that controls spikelet differentiation and development in the grass family (Poaceae), prevents the formation of axillary bud meristems and is closely associated with crop yields. It is unclear whether the FZP gene or its orthologs were selected during the evolutionary process of grass species, which possess diverse spike morphologies. In the present study, we adopted bioinformatics methods for the evolutionary analysis of FZP orthologs in species of the grass family. Thirty-five orthologs with protein sequences identical to that of the FZP gene were identified from 29 grass species. Analysis of conserved domains revealed that the AP2/ERF domains were highly conserved with almost no amino acid mutations. However, species of the tribe Triticeae, genus Oryza, and C4 plants exhibited more significant amino acid mutations in the acidic C-terminus region. Results of the phylogenetic analysis showed that the 29 grass species could be classified into three groups, namely, Triticeae, Oryza, and C4 plants. Within the Triticeae group, the FZP genes originating from the same genome were classified into the same sub-group. When selection pressure analysis was performed, significant positive selection sites were detected in species of the Triticeae and Oryza groups. Our results show that the FZP gene was selected during the grass family's evolutionary process, and functional divergence may have already occurred among the various species. Therefore, researchers investigating the FZP gene's functions should take note of the possible presence of various roles in other grass species.


Subject(s)
Oryza , Poaceae , Poaceae/genetics , Phylogeny , Base Sequence , Mutation , Oryza/genetics , DNA/metabolism
17.
Front Plant Sci ; 12: 763139, 2021.
Article in English | MEDLINE | ID: mdl-34868159

ABSTRACT

Short-chain esters derived from fatty acid contribute to the characteristic flavor of apricot fruit, and the biosynthesis of these compounds in fruit is catalyzed by alcohol acyltransferase (AAT). In this work, we investigated the AAT gene family via genome-wide scanning, and three AAT loci were identified in different linkage groups (LGs), with PaAAT1 (PARG22907m01) in LG7, PaAAT2 (PARG15279m01) in LG4, and PaAAT3 (PARG22697m01) in LG6. Phylogenetic analysis showed that PaAAT1 belongs to clade 3, while PaAAT2 and PaAAT3 belong to clade 1 and clade 2, respectively. In contrast, the three AAT genes present different expression patterns. Only PaAAT1 exhibited distinct patterns of fruit-specific expression, and the expression of PaAAT1 sharply increased during fruit ripening, which is consistent with the abundance of C4-C6 esters such as (E)-2-hexenyl acetate and (Z)-3-hexenyl acetate. The transient overexpression of PaAAT1 in Katy (KT) apricot fruit resulted in a remarkable decrease in hexenol, (E)-2-hexenol, and (Z)-3-hexenol levels while significantly increasing the corresponding acetate production (p < 0.01). A substrate assay revealed that the PaAAT1 protein enzyme can produce hexenyl acetate, (E)-2-hexenyl acetate, and (Z)-3-hexenyl acetate when C6 alcohols are used as substrates for the reaction. Taken together, these results indicate that PaAAT1 plays a crucial role in the production of C6 esters in apricot fruit during ripening.

18.
Saudi J Biol Sci ; 28(12): 6946-6956, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34866994

ABSTRACT

Plant metal tolerance proteins (MTPs) play major roles in enhancing resistance to heavy metal tolerance and homeostasis. However, the role of MTPs genes in tomato, which is one of the most popular crops, is still largely limited. Hence, we investigated genome-wide study of tomato MTPs, including phylogenetic, duplication, gene structure, gene ontology and previous transcriptomic data analysis. Moreover, the MTPs expression behaviour under various heavy metals stress has rarely been investigated. In the current study, eleven MTP candidate genes were genome-wide identified and classified into three major groups; Mn-cation diffusion facilitators (CDFs), Fe/Zn-CDFs, and Zn-CDFs based on the phylogeny. Structural analysis of SlMTPs showed high gene similarity within the same group with cation_efflux or ZT_dimerdomains. Evolutionary analysis revealed that segmental duplication contributed to the expansion of the SlMTP family. Gene ontology further showed the vital roles of MTPs in metal-related processes. Tissue-specific expression profiling exhibited similar expression patterns in the same group, whereas gene expression varied among groups. The MTPs expression was evaluated after tomato treatments by five divalent heavy metals (Cd2+, Co2+, Mn2+, Zn2+, and Fe2+). SlMTP genes displayed differential responses in either plant leaves or roots under heavy metals treatments. Nine and ten SlMTPs responded to at least one metal ion treatment in leaves and roots, respectively. In addition SlMTP1, SlMTP3, SlMTP4, SlMTP8, SlMTP10 and SlMTP11 exhibited the highest expression responses in most of heavy metals treatments. Overall, our findings presented a standpoint on the evolution of MTPs and their evolution in tomato and paved the way for additional functional characterization under heavy metal toxicity.

19.
Front Genet ; 12: 770427, 2021.
Article in English | MEDLINE | ID: mdl-34804129

ABSTRACT

The C2H2-zinc finger proteins (ZFP) comprise a large family of transcription factors with various functions in biological processes. In maize, the function regulation of C2H2- zine finger (ZF) genes are poorly understood. We conducted an evolution analysis and functional prediction of the maize C2H2-ZF gene family. Furthermore, the ZmZFP126 gene has been cloned and sequenced for further favorable allelic variation discovery. The phylogenetic analysis of the C2H2-ZF domain indicated that the position and sequence of the C2H2-ZF domain of the poly-zinc finger gene are relatively conserved during evolution, and the C2H2-ZF domain with the same position is highly conserved. The expression analysis of the C2H2-ZF gene family in 11 tissues at different growth stages of B73 inbred lines showed that genes with multiple transcripts were endowed with more functions. The expression analysis of the C2H2-ZF gene in P1 and P2 inbred lines under drought conditions showed that the C2H2-ZF genes were mainly subjected to negative regulation under drought stress. Functional prediction indicated that the maize C2H2-ZF gene is mainly involved in reproduction and development, especially concerning the formation of important agronomic traits in maize yield. Furthermore, sequencing and correlation analysis of the ZmZFP126 gene indicated that this gene was significantly associated with the SDW-NAP and TDW-NAP. The analysis of the relationship between maize C2H2-ZF genes and C2H2-ZF genes with known functions indicated that the functions of some C2H2-ZF genes are relatively conservative, and the functions of homologous genes in different species are similar.

20.
J Am Chem Soc ; 143(38): 15475-15489, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34510890

ABSTRACT

While research interest in aqueous batteries has surged due to their intrinsic low cost and high safety, the practical application is plagued by the restrictive capacity (less than 600 mAh g-1) of electrode materials. Sulfur-based aqueous batteries (SABs) feature high theoretical capacity (1672 mAh g-1), compatible potential, and affordable cost, arousing ever-increasing attention and intense efforts. Nonetheless, the underlying electrochemistry of SABs remains unclear, including complicated thermodynamic evolution and insufficient kinetics metrics. Consequently, multifarious irreversible reactions in various application systems imply the systematic complexity of SABs. Herein, rather than simply compiling recent progress, this Perspective aims to construct a theory-to-application methodology. Theoretically, attention has been paid to a critical appraisal of the aqueous-S-related electrochemistry, including fundamental properties evaluation, kinetics metrics with transient and steady-state analyses, and thermodynamic equilibrium and evolution. To put it into practice, current challenges and promising strategies are synergistically proposed. Practically, the above efforts are employed to evaluate and develop the device-scale applications, scilicet flow-SABs, oxide-SABs, and metal-SABs. Last, chemical and engineering insights are rendered collectively for the future development of high-energy SABs.

SELECTION OF CITATIONS
SEARCH DETAIL
...