Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 441
Filter
1.
Article in English | MEDLINE | ID: mdl-39299764

ABSTRACT

OBJECTIVE: Neonatal meningitis significantly contributes to neonatal morbidity and mortality, yet large-scale epidemiological data in developing countries, particularly among very preterm infants (VPIs), remain sparse. This study aimed to describe the epidemiology of meningitis among VPIs in China. DESIGN: Cross-sectional study using the Chinese Neonatal Network database from 2019 to 2021. SETTING: 79 tertiary neonatal intensive care units in China. PATIENTS: Infants with gestational age <32 weeks or birth weight <1500 g. MAIN OUTCOME MEASURES: Incidence, pathogen distribution, antimicrobial use and outcomes of bacterial and fungal meningitis. RESULTS: Of 31 915 VPIs admitted, 122 (0.38%) infants were diagnosed with culture-confirmed meningitis, with 14 (11.5%) being early-onset (≤6 days of age) and 108 (88.5%) being late-onset (>6 days of age). The overall in-hospital mortality was 18.0% (22/122). A total of 127 pathogens were identified, among which 63.8% (81/127) were Gram-negative bacteria, 24.4% (31/127) were Gram-positive bacteria and 11.8% (15/127) were fungi. In terms of empirical therapy (on the day of the first lumbar puncture), the most commonly used antibiotic was meropenem (54.9%, 67/122). For definitive therapy (on the sixth day following the first lumbar puncture, 86 cases with available antibiotic data), meropenem (60.3%, 35/58) and vancomycin (57.1%, 16/28) were the most used antibiotics for Gram-negative and Gram-positive bacterial meningitis, respectively. 44% of infants with Gram-positive bacterial meningitis and 52% with Gram-negative bacterial meningitis received antibiotics for more than 3 weeks. CONCLUSION: 0.38% of VPIs in Chinese neonatal intensive care units were diagnosed with meningitis, experiencing significant mortality and inappropriate antibiotic therapy. Gram-negative bacteria were the predominant pathogens, with fungi emerging as a significant cause.

3.
Bioact Mater ; 42: 18-31, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39262845

ABSTRACT

Infected bone defect is a formidable clinical challenge. Conventional approaches to prevention and treatment for infected bone defects are unsatisfactory. The key elements of the treatment are bone defect reconstruction, anti-infection, and osteogenesis. Conventional treatment methods remain unsatisfactory owing to the absence of composite integrating materials with anti-infective, and osteogenic activities as well as proper mechanical strength at the same time. In this study, we fabricated a vancomycin-encapsulated hydrogel with bacteria-responsive release properties combined with a shaved porous (submicron-micron) three-dimensional-printed Ti6Al4V implant. The implant surface, modified with submicron-sized pores through microarc oxidation (MAO), showed enhanced osteogenic activity and integrated well with the hydrogel drug release system, enabling sustained vancomycin release. In vitro experiments underscored the commendable antibacterial ability, biosafety, and osteoinductive potential. Effective antibacterial and osteogenic abilities of the implant were further demonstrated in vivo in infected rabbit bone defects. These results showed that the vancomycin-encapsulated hydrogel-loaded microarc-oxidized 3D-printed porous Ti6Al4V can repair the infected bone defects with satisfactory anti-infection and osseointegration effects.

4.
BMC Med ; 22(1): 377, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39256839

ABSTRACT

BACKGROUND: Assessing dietary phenylalanine (Phe) tolerance is crucial for managing hyperphenylalaninemia (HPA) in children. However, traditionally, adjusting the diet requires significant time from clinicians and parents. This study aims to investigate the development of a machine-learning model that predicts a range of dietary Phe intake tolerance for children with HPA over 10 years following diagnosis. METHODS: In this multicenter retrospective observational study, we collected the genotypes of phenylalanine hydroxylase (PAH), metabolic profiles at screening and diagnosis, and blood Phe concentrations corresponding to dietary Phe intake from over 10 years of follow-up data for 204 children with HPA. To incorporate genetic information, allelic phenotype value (APV) was input for 2965 missense variants in the PAH gene using a predicted APV (pAPV) model. This model was trained on known pheno-genotype relationships from the BioPKU database, utilizing 31 features. Subsequently, a multiclass classification model was constructed and trained on a dataset featuring metabolic data, genetic data, and follow-up data from 3177 events. The final model was fine-tuned using tenfold validation and validated against three independent datasets. RESULTS: The pAPV model achieved a good predictive performance with root mean squared error (RMSE) of 1.53 and 2.38 on the training and test datasets, respectively. The variants that cause amino acid changes in the region of 200-300 of PAH tend to exhibit lower pAPV. The final model achieved a sensitivity range of 0.77 to 0.91 and a specificity range of 0.8 to 1 across all validation datasets. Additional assessment metrics including positive predictive value (0.68-1), negative predictive values (0.8-0.98), F1 score (0.71-0.92), and balanced accuracy (0.8-0.92) demonstrated the robust performance of our model. CONCLUSIONS: Our model integrates metabolic and genetic information to accurately predict age-specific Phe tolerance, aiding in the precision management of patients with HPA. This study provides a potential framework that could be applied to other inborn errors of metabolism.


Subject(s)
Machine Learning , Phenylketonurias , Humans , Retrospective Studies , Phenylketonurias/diet therapy , Phenylketonurias/genetics , Phenylketonurias/diagnosis , Child , Male , Female , Child, Preschool , Phenylalanine Hydroxylase/genetics , Phenylalanine/blood , Infant , Genotype , Adolescent
5.
Bioact Mater ; 42: 124-139, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39280580

ABSTRACT

Most acute ischemic stroke patients with large vessel occlusion require stent implantation for complete recanalization. Yet, due to ischemia-reperfusion injury, over half of these patients still experience poor prognoses. Thus, neuroprotective treatment is imperative to alleviate the ischemic brain injury, and a proof-of-concept study was conducted on "biodegradable neuroprotective stent". This concept is premised on the hypothesis that locally released Mg2+/H2 from Mg metal within the bloodstream could offer synergistic neuroprotection against reperfusion injury in distant cerebral ischemic tissues. Initially, the study evaluated pure Mg's neuroactive potential using oxygen-glucose deprivation/reoxygenation (OGD/R) injured neuron cells. Subsequently, a pure Mg wire was implanted into the common carotid artery of the transient middle cerebral artery occlusion (MCAO) rat model to simulate human brain ischemia/reperfusion injury. In vitro analyses revealed that pure Mg extract aided mouse hippocampal neuronal cell (HT-22) in defending against OGD/R injury. Additionally, the protective effects of the Mg wire on behavioral abnormalities, neural injury, blood-brain barrier disruption, and cerebral blood flow reduction in MCAO rats were verified. Conclusively, Mg-based biodegradable neuroprotective implants could serve as an effective local Mg2+/H2 delivery system for treating distant cerebral ischemic diseases.

6.
Heliyon ; 10(17): e37087, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39286078

ABSTRACT

Background: Necrotizing enterocolitis (NEC) is a condition characterized by acquired damage to the mucosal lining, predominantly affecting premature infants. Bioinformatics assessments uncovered a notable rise in miR-155-5p expression in the intestinal tissues of infants suffering from NEC. Nevertheless, the development of NEC's underlying mechanisms and the role of miR-155-5p are still not well understood. This research aimed to explore the role of miR-155-5p in NEC and to elucidate its underlying mechanisms. Methods: To replicate NEC in vitro, lipopolysaccharide (LPS) was employed, whereas an in vivo rat model of NEC was established using formula feeding and exposure to hypoxia. Subsequently, levels of inflammatory cytokines, cell survival, and apoptosis rates were assessed. Various biochemical indicators such as glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were measured utilizing a purchased diagnostic kit. For the assessment of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) within FHC cells, analysis by flow cytometry was conducted. Additionally, the technique of Western blotting was utilized to analyze the levels of ferroptosis-associated proteins. Moreover, hematoxylin and eosin (H&E) staining was carried out to observe the histopathological alterations in the intestinal tissue samples from rats with necrotizing enterocolitis (NEC). Results: Reducing miR-155-5p improved the survival of FHC cells exposed to LPS, decreased cell apoptosis, inflammation, and ferroptosis, and mitigated intestinal damage in NEC rats. Furthermore, SLC7A11 was found to be a direct target of miR-155-5p. The inhibition of miR-155-5p decreased LPS-induced inflammation and ferroptosis in both FHC cells and NEC rats by promoting SLC7A11 expression. This effect was evidenced by increased levels of ferroptosis-related proteins FTH1 and GPX4, decreased COX-2 and ACSL4 levels, lower lipid peroxidation marker MDA, reduced antioxidant markers GSH, SOD, and CAT, fewer IL-6 and TNF-α, and suppression of the IκBα/NF-κB p65 signaling pathway. Conclusions: In conclusion, reducing miR-155-5p could improve intestinal damage in NEC by inhibiting inflammation and ferroptosis. These findings may provide theoretical insights for the development of new therapies for NEC.

7.
Pediatr Nephrol ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283520

ABSTRACT

Neonatal hypokalemia (defined as a serum potassium level <3.5 mEq/L) is the most common electrolyte disorder encountered in clinical practice. In addition to common secondary causes, primary genetic etiologies are also closely associated with hypokalemia. Currently, a systematic characterization of these genetic disorders is lacking, making early recognition challenging and clinical management uncertain. This review will aid clinicians by summarizing the genetic background of neonatal hypokalemia from two aspects: (1) increased excretion of K+, whereby genetic factors primarily lead to increased renal Na+ influx, decreased H+ efflux, or reduced Cl- influx, ultimately resulting in increased K+ efflux; and (2) decreased extracellular distribution of K+, whereby genetic factors result in abnormalities in transmembrane ion channels, reducing outward potassium currents or generating inward cation leak currents. We describe over ten genetic diseases associated with neonatal hypokalemia, which involve pathogenic variants in dozens of genes and affect multiple target organs, including the kidneys, intestines, and skeletal muscle. For example, in the renal tubules, pathogenic variants in the SLC12A1 gene encoding the Na+-K+-2Cl- cotransporter lead to renal K+ loss, causing Bartter syndrome type I; in intestinal epithelial cells, pathogenic variants in the SLC26A3 gene result in a defective Cl⁻-HCO3⁻ exchanger, causing congenital chloride diarrhea; and in skeletal muscle, pathogenic variants in the CACNA1S gene impact membrane calcium ion channels resulting in hypokalemic periodic paralysis. Given the wide variety of organs and genetic alterations that can contribute to neonatal hypokalemia, we believe this review will provide valuable insights for clinical diagnosis and treatment.

8.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(8): 817-822, 2024 Aug 15.
Article in Chinese | MEDLINE | ID: mdl-39148385

ABSTRACT

OBJECTIVES: To investigate the amplitude-integrated electroencephalography (aEEG) monitoring results of hospitalized neonates in plateau areas. METHODS: A retrospective analysis was conducted on 5 945 neonates who were admitted to the Department of Neonatology, Kunming Children's Hospital, and received aEEG monitoring from January 2020 to December 2022. According to the aEEG monitoring results, they were divided into a normal aEEG group and an abnormal aEEG group. The incidence rate of aEEG abnormalities was analyzed in neonates with various systemic diseases, as well as the manifestations of aEEG abnormalities and the consistency between aEEG abnormalities and clinical abnormalities. RESULTS: Among the 5 945 neonates, the aEEG abnormality rate was 19.28% (1 146/5 945), with an abnormality rate of 29.58% (906/3 063) in critically ill neonates and 8.33% (240/2 882) in non-critically ill neonates (P<0.05). The children with inherited metabolic diseases showed the highest aEEG abnormality rate of 60.77% (79/130), followed by those with central nervous system disorders [42.22% (76/180)] and preterm infants [35.53% (108/304)]. Compared with the normal aEEG group, the abnormal aEEG group had significantly lower age and gestational age, as well as a significantly lower birth weight of preterm infants (P<0.05). Among the 1 146 neonates with aEEG abnormalities, the main types of aEEG abnormalities were sleep cycle disorders in 597 neonates (52.09%), background activity abnormalities in 294 neonates (25.65%), and epileptiform activity in 255 neonates (22.25%), and there were 902 neonates (78.71%) with abnormal clinical manifestations. The sensitivity and specificity of aEEG monitoring for brain function abnormalities were 33.51% and 92.50%, respectively. CONCLUSIONS: In plateau areas, there is a relatively high rate of aEEG abnormalities among hospitalized neonates, particularly in critically ill neonates and those with smaller gestational ages and younger ages, suggesting a high risk of brain injury. Therefore, routine aEEG monitoring for the hospitalized neonates can help with the early detection of brain function abnormalities, the decision-making in treatment, and the formulation of brain protection strategies.


Subject(s)
Electroencephalography , Humans , Infant, Newborn , Retrospective Studies , Male , Female , Hospitalization , Infant, Premature , Monitoring, Physiologic/methods
9.
J Neurosci ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39151953

ABSTRACT

Oligodendrocyte myelination and remyelination after injury are intricately regulated by various intrinsic and extrinsic factors, including transcriptional regulators. Among these, the zinc-finger protein ZFP488 is an oligodendrocyte-enriched transcriptional regulator that promotes oligodendrocyte differentiation in the developing neural tube and in oligodendroglial cell lines. However, the specific in vivo genetic requirements for ZFP488 during oligodendrocyte development and remyelination have not been defined. To address this gap, we generated a lineage-traceable ZFP488 knock-out mouse line, wherein a H2b-GFP reporter replaces the ZFP488-coding region. Using these mice of either sex, we examined the dynamics of ZFP488 expression from the endogenous promoter in the developing central nervous system (CNS). We observed a unique expression pattern in the oligodendrocyte lineage, with ZFP488 expression particularly enriched in differentiated oligodendrocytes. ZFP488 loss resulted in delayed myelination in the developing CNS and impaired remyelination after demyelinating injury in the brain. Integrated transcriptomic and genomic profiling further revealed that ZFP488 loss decreased expression of myelination-associated genes but not oligodendrocyte progenitor-associated genes, suggesting that ZFP488 serves as a positive regulator of myelination by regulating maturation programs. Thus, our genetic loss-of-function study revealed that ZFP488 regulates a stage-dependent differentiation program that controls the timing of CNS myelination and remyelination.Significance statement Precise timing of myelination is essential for efficient neural communication and is linked to the development of cognitive and motor skills as well as myelin repair after injury. ZFP488 is a transcriptional regulator enriched in oligodendrocytes, however its in vivo functions remain unclear. By generating ZFP488 loss-of-function mice, we demonstrated that ZFP488 is critical for the timing of myelination and remyelination and that its loss impaired the initial differentiation of oligodendrocytes but not their precursor formation and proliferation. Transcriptomic profiling showed that ZFP488 functions as a positive regulator of myelination by modulating oligodendrocyte maturation programs. Thus, our findings underscore the important role of ZFP488 in myelination and the potential of ZFP488 augmentation as an avenue to enhance oligodendrocyte regeneration.

10.
Gut Microbes ; 16(1): 2388805, 2024.
Article in English | MEDLINE | ID: mdl-39166704

ABSTRACT

Early identification of neonatal jaundice (NJ) appears to be essential to avoid bilirubin encephalopathy and neurological sequelae. The interaction between gut microbiota and metabolites plays an important role in early life. It is unclear whether the composition of the gut microbiota and metabolites can be used as an early indicator of NJ or to aid clinical decision-making. This study involved a total of 196 neonates and conducted two rounds of "discovery-validation" research on the gut microbiome-metabolome. It utilized methods of machine learning, causal inference, and clinical prediction model evaluation to assess the significance of gut microbiota and metabolites in classifying neonatal jaundice (NJ), as well as the potential causal relationships between corresponding clinical variables and NJ. In the discovery stage, NJ-associated gut microbiota, network modules, and metabolite composition were identified by gut microbiome-metabolome association analysis. The NJ-associated gut microbiota was closely related to bile acid metabolites. By Lasso machine learning assessment, we found that the gut bacteria were associated with abnormal bile acid metabolism. The machine learning-causal inference approach revealed that gut bacteria affected serum total bilirubin and NJ by influencing bile acid metabolism. NJ-associated gut bile acids are potential biomarkers of NJ, and clinical prediction models constructed based on these biomarkers have some clinical effects and the model may be used for disease risk prediction. In the validation stage, it was found that intestinal metabolites can predict NJ, and the machine learning-causal inference approach revealed that bile acid metabolites affected NJ itself by affecting the total bilirubin content. Intestinal bile acid metabolites are potential biomarkers of NJ. By applying machine learning-causal inference methods to gut microbiome-metabolome association studies, we found NJ-associated intestinal bacteria and their network modules and bile acid metabolite composition. The important role of intestinal bacteria and bile acid metabolites in NJ was determined, which can predict the risk of NJ.


Association analysis of the intestinal microbiome-metabolome found that neonatal jaundice (NJ)-related intestinal microbiota, network modules and metabolite composition, and the intestinal microbiota are closely related to bile acid metabolites.Gut bacteria were found to affect serum total bilirubin (TBIL) and NJ by influencing bile acid metabolism through a machine learning-causal inference approach, and bile acid metabolites affected NJ itself by affecting the TBIL content.NJ-associated gut bacteria and bile acids are potential biomarkers of NJ, and clinical decision-making models based on these biomarkers have some clinical effects for disease risk prediction.


Subject(s)
Bacteria , Bile Acids and Salts , Gastrointestinal Microbiome , Jaundice, Neonatal , Machine Learning , Humans , Infant, Newborn , Bile Acids and Salts/metabolism , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics , Jaundice, Neonatal/metabolism , Jaundice, Neonatal/microbiology , Female , Male , Biomarkers/metabolism , Metabolome , Bilirubin/metabolism , Bilirubin/blood , Metabolomics/methods , Multiomics
11.
Phytochemistry ; 227: 114232, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39097216

ABSTRACT

A bioassay-guided isolation from Atractylodes lancea (Thunb.) DC. obtained 22 compounds, including eight previously undescribed sesquiterpenoids and polyacetylenes (1, 3 and 12-17), as well as fourteen known analogues, and their structures were confirmed by extensive spectroscopic methods. This study evaluated their antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA) for the first time, as well as anti-inflammatory activity. Most of them, including new compounds, showed varying degrees of antibacterial activity against S. aureus and MRSA. Notably, compound 21 exhibited significant antibacterial activity against four different bacteria (MIC 6.25-20.00 µg/mL). This suggested that 21 may have the potential to be developed into a broad-spectrum antibacterial agent. Moreover, except for 9 and 11, most compounds exhibited great anti-inflammatory activity (IC50 1.92-37.91 µM), and iNOS might be a potential target of these compounds according to the molecular docking analysis.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Atractylodes , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Atractylodes/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Molecular Structure , Molecular Docking Simulation , Animals , Structure-Activity Relationship , Mice , Dose-Response Relationship, Drug , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/metabolism , Biological Assay , RAW 264.7 Cells , Staphylococcus aureus/drug effects
12.
Nat Commun ; 15(1): 6685, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107301

ABSTRACT

Mitochondrial RNA (mtRNA) in the cytosol can trigger the innate immune sensor MDA5, and autoinflammatory disease due to type I IFN. Here, we show that a dominant negative mutation in the gene encoding the mitochondrial exonuclease REXO2 may cause interferonopathy by triggering the MDA5 pathway. A patient characterized by this heterozygous de novo mutation (p.T132A) presented with persistent skin rash featuring hyperkeratosis, parakeratosis and acanthosis, with infiltration of lymphocytes and eosinophils around small blood vessels. In addition, circulating IgE levels and inflammatory cytokines, including IFNα, are found consistently elevated. Transcriptional analysis highlights a type I IFN gene signature in PBMC. Mechanistically, REXO2 (T132A) lacks the ability to cleave RNA and inhibits the activity of wild-type REXO2. This leads to an accumulation of mitochondrial dsRNA in the cytosol, which is recognized by MDA5, leading to the associated type I IFN gene signature. These results demonstrate that in the absence of appropriate regulation by REXO2, aberrant cellular nucleic acids may accumulate and continuously trigger innate sensors, resulting in an inborn error of immunity.


Subject(s)
Heterozygote , Interferon Type I , Interferon-Induced Helicase, IFIH1 , Humans , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Interferon Type I/metabolism , Interferon Type I/genetics , Mutation , Male , Mitochondria/metabolism , Mitochondria/genetics , Female , Immunity, Innate/genetics , Exonucleases/metabolism , Exonucleases/genetics , HEK293 Cells , Exoribonucleases/genetics , Exoribonucleases/metabolism , Cytosol/metabolism , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/genetics , Immunoglobulin E/blood , Immunoglobulin E/immunology , Genes, Dominant
13.
Sci Total Environ ; 951: 175742, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39182763

ABSTRACT

Wastewater-based epidemiology (WBE) is a valuable complement to clinical monitoring, allowing for effective surveillance of viral infections in populations, and tracking the presence and the epidemiological dynamics of various infectious pathogens in communities. However, virus loads are usually low-abundant in wastewater, and current virus concentration methods for WBE are laborious and time-consuming with low recovery efficiency. To address these challenges, we have developed a magnetic bead-based semi-automated method involving extraction and purification to directly concentrate viral nucleic acids from sewage within 55 min. Prior to concentration, 0.5 % LDS was introduced to pretreat wastewater to inactivate viruses and release viral nucleic acids from both liquid and solid fractions to improve recovery. Under optimal conditions, the concentration method combined with reverse transcription-quantitative polymerase chain reaction (RT-qPCR) can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA added exogenously in wastewater as low as 4.9 copies/mL within 2.5 h, with an average recovery rate exceeding 80 %. Testing real sewages proved the applicability of the method to detect multiple viruses in different sewages. Additionally, variants of SARS-CoV-2 were successfully identified by multiplex amplicon sequencing in two samples. In conclusion, the new method could provide a much more efficient way for WBE of pathogenic viruses in various sewages.


Subject(s)
RNA, Viral , Wastewater , Wastewater/virology , RNA, Viral/analysis , SARS-CoV-2 , Surface-Active Agents , Sewage/virology
14.
J Genet Genomics ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002897

ABSTRACT

Facial morphology, a complex trait influenced by genetics, holds great significance in evolutionary research. However, due to limited fossil evidence, the facial characteristics of Neanderthals and Denisovans have remained largely unknown. In this study, we conducted a large-scale multi-ethnic meta-analysis of the genome-wide association study (GWAS), including 9674 East Asians and 10,115 Europeans, quantitatively assessing 78 facial traits using 3D facial images. We identified 71 genomic loci associated with facial features, including 21 novel loci. We developed a facial polygenic score (FPS) that enables the prediction of facial features based on genetic information. Interestingly, the distribution of FPSs among populations from diverse continental groups exhibited relevant correlations with observed facial features. Furthermore, we applied the FPS to predict the facial traits of seven Neanderthals and one Denisovan using ancient DNA and aligned predictions with the fossil records. Our results suggested that Neanderthals and Denisovans likely shared similar facial features, such as a wider but shorter nose and a wider endocanthion distance. The decreased mouth width was characterized specifically in Denisovans. The integration of genomic data and facial trait analysis provides valuable insights into the evolutionary history and adaptive changes in human facial morphology.

15.
Front Genet ; 15: 1296797, 2024.
Article in English | MEDLINE | ID: mdl-39036704

ABSTRACT

Objective: Fructose-1,6-bisphosphatase deficiency (FBP1D) is a rare inborn error due to mutations in the FBP1 gene. The genetic spectrum of FBP1D in China is unknown, also nonspecific manifestations confuse disease diagnosis. We systematically estimated the FBP1D prevalence in Chinese and explored genotype-phenotype association. Methods: We collected 101 FBP1 variants from our cohort and public resources, and manually curated pathogenicity of these variants. Ninety-seven pathogenic or likely pathogenic variants were used in our cohort to estimate Chinese FBP1D prevalence by three methods: 1) carrier frequency, 2) permutation and combination, 3) Bayesian framework. Allele frequencies (AFs) of these variants in our cohort, China Metabolic Analytics Project (ChinaMAP) and gnomAD were compared to reveal the different hotspots in Chinese and other populations. Clinical and genetic information of 122 FBP1D patients from our cohort and published literature were collected to analyze the genotype-phenotypes association. Phenotypes of 68 hereditary fructose intolerance (HFI) patients from our previous study were used to compare the phenotypic differences between these two fructose metabolism diseases. Results: The estimated Chinese FBP1D prevalence was 1/1,310,034. In the Chinese population, c.490G>A and c.355G>A had significantly higher AFs than in the non-Finland European population, and c.841G>A had significantly lower AF value than in the South Asian population (all p values < 0.05). The genotype-phenotype association analyses showed that patients carrying homozygous c.841G>A were more likely to present increased urinary glycerol, carrying two CNVs (especially homozygous exon1 deletion) were often with hepatic steatosis, carrying compound heterozygous variants were usually with lethargy, and carrying homozygous variants were usually with ketosis and hepatic steatosis (all p values < 0.05). By comparing to phenotypes of HFI patients, FBP1D patients were more likely to present hypoglycemia, metabolic acidosis, and seizures (all p-value < 0.05). Conclusion: The prevalence of FBP1D in the Chinese population is extremely low. Genetic sequencing could effectively help to diagnose FBP1D.

16.
World Neurosurg ; 189: e807-e813, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986947

ABSTRACT

OBJECTIVE: This study aimed to establish a predictive nomogram model for recollapse of fractured vertebra after posterior pedicle screw fixation in thoracolumbar fractures (TLFs). METHODS: Patients undergoing posterior pedicle screw fixation for TLFs at our hospital between January 2016 and December 2021 were retrospectively reviewed. Patients were divided into 2 groups according to the presence or absence of recollapse of the fractured vertebra at the final follow-up. The predictors for fractured vertebra recollapse were identified by univariate and multivariable logistic regression analysis, and a nomogram model was developed. The prediction performance and internal validation were established. RESULTS: A total of 224 patients were included in this study. Of these, 46 (20.5%) patients developed recollapse of fractured vertebra. Age, thoracic and lumbar injury severity score, screw distribution in the fractured vertebra, and anterior vertebral height compression ratio were associated with vertebral recollapse. These predictors were used to construct a predictive nomogram. The area under the receiver operating characteristic curve of the nomogram model was 0.891. The concordance index was 0.891, and it was 0.877 with bootstrapping validation. The calibration curves and decision curve analysis also suggested that the nomogram model had excellent predictive performances for fractured vertebra recollapse. CONCLUSIONS: A clinical nomogram incorporating 4 variables was constructed to predict fractured vertebra recollapse after posterior pedicle screw fixation for TLFs. The nomogram demonstrated good calibration and discriminative abilities, which may help clinicians to make better treatment decisions.


Subject(s)
Fracture Fixation, Internal , Lumbar Vertebrae , Nomograms , Pedicle Screws , Spinal Fractures , Thoracic Vertebrae , Humans , Spinal Fractures/surgery , Spinal Fractures/diagnostic imaging , Male , Female , Thoracic Vertebrae/surgery , Thoracic Vertebrae/injuries , Lumbar Vertebrae/surgery , Lumbar Vertebrae/injuries , Middle Aged , Adult , Retrospective Studies , Fracture Fixation, Internal/methods , Aged , Postoperative Complications/etiology
17.
NPJ Precis Oncol ; 8(1): 155, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043808

ABSTRACT

Multiple pulmonary lung cancers (MPLCs) are frequently encountered on computed tomography (CT) scanning of chest, yet their intrinsic characteristics associated with genomic features and radiological or pathological textures that may lead to distinct clinical outcomes remain largely unexplored. A total of 27 pulmonary nodules covering different radiological or pathological textures as well as matched adjacent normal tissues and blood samples were collected from patients diagnosed with MPLCs. Whole-exome sequencing (WES) and whole-transcriptome sequencing were performed. The molecular and immune features of MPLCs associated with distinct radiological or pathological textures were comprehensively investigated. Genomics analysis unveiled the distinct branches of pulmonary nodules originating independently within the same individual. EGFR and KRAS mutations were found to be prevalent in MPLCs, exhibiting mutual exclusivity. The group with KRAS mutations exhibited stronger immune signatures compared to the group with EGFR mutations. Additionally, MPLCs exhibited a pronounced immunosuppressive microenvironment, which was particularly distinct when compared with normal tissues. The expression of the FDSCP gene was specifically observed in MPLCs. When categorizing MPLCs based on radiological or pathological characteristics, a progressive increase in mutation accumulation was observed, accompanied by heightened chromatin-level instability as ground-glass opacity component declined or invasive progression occurred. A close association with the immunosuppressive microenvironment was also observed during the progression of pulmonary nodules. Notably, the upregulation of B cell and regulatory T cell marker genes occurred progressively. Immune cell abundance analysis further demonstrated a marked increase in exhausted cells and regulatory T cells during the progression of pulmonary nodules. These results were further validated by independent datasets including nCounter RNA profiling, single-cell RNA sequencing, and spatial transcriptomic datasets. Our study provided a comprehensive representation of the diverse landscape of MPLCs originating within the same individual and emphasized the significant influence of the immunosuppressive microenvironment in the occurrence and development of pulmonary nodules. These findings hold great potential for enhancing the clinical diagnosis and treatment strategies for MPLCs.

18.
Cancer Med ; 13(11): e7389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864475

ABSTRACT

BACKGROUND: Ion channels play an important role in tumorigenesis and progression of cervical cancer. Multiple long non-coding RNA genes are widely involved in ion channel-related signaling regulation. However, the association and potential clinical application of lncRNAs in the prognosis of cervical cancer are still poorly explored. METHODS: Thirteen patients with cervical cancer were enrolled in current study. Whole transcriptome (involving both mRNAs and lncRNAs) sequencing was performed on fresh tumor and adjacent normal tissues that were surgically resected from patients. A comprehensive cervical cancer-specific lncRNA landscape was obtained by our custom pipeline. Then, a prognostic scoring model of ion-channel-related lncRNAs was established by regression algorithms. The performance of the predictive model as well as its association with the clinical characteristics and tumor microenvironment (TME) status were further evaluated. RESULTS: To comprehensively identify cervical cancer-specific lncRNAs, we sequenced 26 samples of cervical cancer patients and integrated the transcriptomic results. We built a custom analysis pipeline to improve the accuracy of lncRNA identification and functional annotation and obtained 18,482 novel lncRNAs in cervical cancer. Then, 159 ion channel- and tumorigenesis-related (ICTR-) lncRNAs were identified. Based on nine ICTR-lncRNAs, we also established a prognostic scoring model and validated its accuracy and robustness in assessing the prognosis of patients with cervical cancer. Besides, the TME was characterized, and we found that B cells, activated CD8+ T, and tertiary lymphoid structures were significantly associated with ICTR-lncRNAs signature scores. CONCLUSION: We provided a thorough landscape of cervical cancer-specific lncRNAs. Through integrative analyses, we identified ion-channel-related lncRNAs and established a predictive model for assessing the prognosis of patients with cervical cancer. Meanwhile, we characterized its association with TME status. This study improved our knowledge of the prominent roles of lncRNAs in regulating ion channel in cervical cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Ion Channels , RNA, Long Noncoding , Tumor Microenvironment , Uterine Cervical Neoplasms , Humans , RNA, Long Noncoding/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/mortality , Female , Prognosis , Ion Channels/genetics , Ion Channels/metabolism , Tumor Microenvironment/genetics , Biomarkers, Tumor/genetics , Gene Expression Profiling , Middle Aged , Transcriptome
19.
Heliyon ; 10(11): e31742, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845994

ABSTRACT

This review aims to explore the current application of Cranial Ultrasound Screening (CUS) in the diagnosis and treatment of brain diseases in extremely preterm infants. It also discusses the potential role of emerging ultrasound-derived technologies such as Super Microvascular Structure Imaging (SMI), Shear Wave Elastography (SWE), Ultrafast Doppler Ultrasound (UfD), and 3D ventricular volume assessment and automated segmentation techniques in clinical practice. A systematic search of medical databases was conducted using the keywords "(preterm OR extremely preterm OR extremely low birth weight) AND (ultrasound OR ultrasound imaging) AND (neurodevelopment OR brain development OR brain diseases OR brain injury OR neuro*)" to identify relevant literature. The titles, abstracts, and full texts of the identified articles were carefully reviewed to determine their relevance to the research topic. CUS offers unique advantages in early screening and monitoring of brain diseases in extremely preterm infants, as it can be performed at the bedside without the need for anesthesia or special monitoring. This technique facilitates early detection and intervention of conditions such as intraventricular hemorrhage, white matter injury, hydrocephalus, and hypoxic-ischemic injury in critically ill preterm infants. Continuous refinement of the screening and follow-up processes provides reliable clinical decision-making support for healthcare professionals and parents. Emerging ultrasound technologies, such as SWE, SMI, and UfD, are being explored to provide more accurate and in-depth understanding of brain diseases in extremely preterm infants. SWE has demonstrated its effectiveness in assessing the elasticity of neonatal brain tissue, aiding in the localization and quantification of potential brain injuries. SMI can successfully identify microvascular structures in the brain, offering a new perspective on neurologic diseases. UfD provides a high-sensitivity and quantitative imaging method for the prevention and treatment of neonatal brain diseases by detecting subtle changes in red blood cell movement and accurately assessing the status and progression of brain diseases. CUS and its emerging technologies have significant applications in the diagnosis and treatment of brain diseases in extremely preterm infants. Future research aims to address current technical challenges, optimize and enhance the clinical decision-making capabilities related to brain development, and improve the prevention and treatment outcomes of brain diseases in extremely preterm infants.

20.
J Hazard Mater ; 474: 134782, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38824781

ABSTRACT

For a plastic syringe, a stopper at the end of plunger is usually made of polydimethylsiloxane (PDMS, and co-ingredients). To reduce friction and prevent leakage between the stopper and barrel, short chain polymer of liquid PDMS is also used as lubricant. Consequently, an injection process can release solid PDMS debris from the stopper and barrel, and liquid PDMS droplets from the lubricant, both of which are confirmed herein as solid and liquid micro(nano)plastics. From molecular spectrum perspective to directly visualise those micro(nano)plastics, Raman imaging was employed to analyse hundreds-to-thousands of spectra (hyper spectrum or hyperspectral matrix) and significantly enhance signal-to-noise ratio. From morphology perspective to provide high resolution of image, scanning electron microscopy (SEM) was engaged to cross-check with Raman images and increase assignment / quantification certainty. The weak Raman imaging signal of nanoplastics was extracted using image deconvolution algorithm to remove the background noise and average the signal variation. To increase the result's representativeness and avoid quantification bias, multiple syringes were tested and multiple areas were randomly scanned toward statistical results. It was estimated that thousands of microplastics and millions of nanoplastics of solid/liquid PDMS might be injected when using a plastic syringe of 1 mL. Overall, Raman imaging (along with algorithm and SEM) can be helpful for further research on micro(nano)plastics, and it should be cautious to use plastic syringe due to the increasing concern on the emerging contamination of not only solid but also liquid micro(nano)plastics.

SELECTION OF CITATIONS
SEARCH DETAIL