Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 293
Filter
1.
Cell Death Dis ; 15(5): 326, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729966

ABSTRACT

Single cell RNA sequencing (scRNA-seq), a powerful tool for studying the tumor microenvironment (TME), does not preserve/provide spatial information on tissue morphology and cellular interactions. To understand the crosstalk between diverse cellular components in proximity in the TME, we performed scRNA-seq coupled with spatial transcriptomic (ST) assay to profile 41,700 cells from three colorectal cancer (CRC) tumor-normal-blood pairs. Standalone scRNA-seq analyses revealed eight major cell populations, including B cells, T cells, Monocytes, NK cells, Epithelial cells, Fibroblasts, Mast cells, Endothelial cells. After the identification of malignant cells from epithelial cells, we observed seven subtypes of malignant cells that reflect heterogeneous status in tumor, including tumor_CAV1, tumor_ATF3_JUN | FOS, tumor_ZEB2, tumor_VIM, tumor_WSB1, tumor_LXN, and tumor_PGM1. By transferring the cellular annotations obtained by scRNA-seq to ST spots, we annotated four regions in a cryosection from CRC patients, including tumor, stroma, immune infiltration, and colon epithelium regions. Furthermore, we observed intensive intercellular interactions between stroma and tumor regions which were extremely proximal in the cryosection. In particular, one pair of ligands and receptors (C5AR1 and RPS19) was inferred to play key roles in the crosstalk of stroma and tumor regions. For the tumor region, a typical feature of TMSB4X-high expression was identified, which could be a potential marker of CRC. The stroma region was found to be characterized by VIM-high expression, suggesting it fostered a stromal niche in the TME. Collectively, single cell and spatial analysis in our study reveal the tumor heterogeneity and molecular interactions in CRC TME, which provides insights into the mechanisms underlying CRC progression and may contribute to the development of anticancer therapies targeting on non-tumor components, such as the extracellular matrix (ECM) in CRC. The typical genes we identified may facilitate to new molecular subtypes of CRC.


Subject(s)
Colorectal Neoplasms , Single-Cell Analysis , Transcriptome , Tumor Microenvironment , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Tumor Microenvironment/genetics , Transcriptome/genetics , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Gene Expression Profiling , Male , Female
2.
Heliyon ; 10(9): e30173, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38720722

ABSTRACT

This research investigates the impact of hybrid particles dispersed onto the surface of a copper matrix using Friction Stir Processing (FSP) on its microstructural, mechanical, and corrosion behavior. The hybrid particles under study consist of equal fractions of Aluminium Nitride (AlN) and Boron Nitride (BN). Microstructural characterization confirms breakdown of grain size due to dynamic recrystallization and presence of particles, along with their effective bonding to copper matrix. Attained results indicated a significant enhancement in hardness, with an increase of up to 3.9 % upon the introduction of particles onto the surface. Moreover, the tensile properties exhibit noticeable improvements in terms of ultimate tensile strength (6.39 %) and yield strength (6.12 %), albeit at the expense of reduced ductility in the copper matrix. Furthermore, the wear rate (decreases up to 22 %) and corrosion rate of the developed composites demonstrate a decreasing trend with the introduction of particles. This improvement can be attributed to the reduction in grain size during the FSP process and the formation of a nitride passive layer facilitated by the reinforced hybrid particles, thereby effectively inhibiting the corrosion rate.

3.
NPJ Sci Learn ; 9(1): 32, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637595

ABSTRACT

Neurofeedback (NF) training is a closed-loop brain training in which participants learn to regulate their neural activation. NF training of alpha (8-12 Hz) activity has been reported to enhance working memory capacity, but whether it affects the precision in working memory has not yet been explored. Moreover, whether NF training distinctively influences performance in different types of working memory tasks remains unclear. Therefore, the present study conducted a randomized, single-blind, sham-controlled experiment to investigate how alpha NF training affected the capacity and precision of working memory, as well as the related neural change. Forty participants were randomly and equally assigned to the NF group and the sham control group. Both groups received NF training (about 30 min daily) for five consecutive days. The NF group received alpha (8-12 Hz) training, while the sham control group received sham NF training. We found a significant alpha increase within sessions but no significant difference across sessions. However, the behavioral performance and neural activity in the modified Sternberg task did not show significant change after alpha NF training. On the contrary, the alpha NF training group significantly increased visual working memory capacity measured by the Corsi-block tapping task and improved visual working memory precision in the interference condition in a color-recall task. These results suggest that alpha NF training influences performance in working memory tasks involved in the visuospatial sketchpad. Notably, we demonstrated that alpha NF training improves the quantity and quality of visual working memory.

4.
Research (Wash D C) ; 7: 0346, 2024.
Article in English | MEDLINE | ID: mdl-38559676

ABSTRACT

Metastasis is the major cause of cancer-related death, and lymph node is the most common site of metastasis in breast cancer. However, the alterations that happen in tumor-draining lymph nodes (TDLNs) to form a premetastatic microenvironment are largely unknown. Here, we first report the dynamic changes in size and immune status of TDLNs before metastasis in breast cancer. With the progression of tumor, the TDLN is first enlarged and immune-activated at early stage that contains specific antitumor immunity against metastasis. The TDLN is then contracted and immunosuppressed at late stage before finally getting metastasized. Mechanistically, B and follicular helper T (Tfh) cells parallelly expand and contract to determine the size of TDLN. The activation status and specific antitumor immunity of CD8+ T cells in the TDLN are determined by interleukin-21 (IL-21) produced by Tfh cells, thus showing parallel changes. The turn from activated enlargement to suppressed contraction is due to the spontaneous contraction of germinal centers mediated by follicular regulatory T cells. On the basis of the B-Tfh-IL-21-CD8+ T cell axis, we prove that targeting the axis could activate TDLNs to resist metastasis. Together, our findings identify the dynamic alterations and regulatory mechanisms of premetastatic TDLNs of breast cancer and provide new strategies to inhibit lymph node metastasis.

5.
Micromachines (Basel) ; 15(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38675239

ABSTRACT

The growing need for the multiband photodetection of a single scene has promoted the development of both multispectral coupling and broadband detection technologies. Photodetectors operating across the infrared (IR) to terahertz (THz) regions have many applications such as in optical communications, sensing imaging, material identification, and biomedical detection. In this review, we present a comprehensive overview of the latest advances in broadband photodetectors operating in the infrared to terahertz range, highlighting their classification, operating principles, and performance characteristics. We discuss the challenges faced in achieving broadband detection and summarize various strategies employed to extend the spectral response of photodetectors. Lastly, we conclude by outlining future research directions in the field of broadband photodetection, including the utilization of novel materials, artificial microstructure, and integration schemes to overcome current limitations. These innovative methodologies have the potential to achieve high-performance, ultra-broadband photodetectors.

6.
Plant Physiol ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38590166

ABSTRACT

Photosynthesis is a major trait of interest for development of high-yield crop plants. However, little is known about the effects of high-density planting on photosynthetic responses at the whole-canopy level. Using the high-yielding maize (Zea mays L.) cultivars 'LY66', 'MC670', and 'JK968', we here conducted a two-year field experiment to assess ear development in addition to leaf characteristics and photosynthetic parameters in each canopy layer at four planting densities. Increased planting density promoted high grain yield and population-scale biomass accumulation despite reduced per-plant productivity. MC670 had the strongest adaptability to high-density planting conditions. Physiological analysis showed that increased planting density primarily led to decreases in the single-leaf area above the ear for LY66 and MC670 and below the ear for JK968. Furthermore, high planting density decreased chlorophyll content and the photosynthetic rate due to decreased canopy transmission, leading to severe decreases in single-plant biomass accumulation in the lower canopy. Moreover, increased planting density improved pre-silking biomass transfer, especially in the lower canopy. Yield showed significant positive relationships with photosynthesis and biomass in the lower canopy, demonstrating the important contributions of these leaves to grain yield under dense planting conditions. Increased planting density led to retarded ear development as a consequence of reduced glucose and fructose contents in the ears, indicating reductions in sugar transport that were associated with limited sink organ development, reduced kernel number, and yield loss. Overall, these findings highlighted the photosynthetic capacities of the lower canopy as promising targets for improving maize yield under dense planting conditions.

7.
Plant Cell Environ ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600785

ABSTRACT

Reactive oxygen species (ROS) and defence hormones like salicylic acid (SA) and jasmonic acid (JA) play pivotal roles in triggering cell death. However, the precise mechanism governing the interaction between ROS and SA/JA remains elusive. Recently, our research revealed that RNAi mutants with suppressed expression of PROGRAMMED CELL DEATH8 (PCD8) exhibit an overabundance of tetrapyrrole intermediates, particularly uroporphyrinogen III (Uro III), leading to the accumulation of singlet oxygen (1O2) during the transition from darkness to light, thereby instigating leaf necrosis. In this investigation, we uncovered that 1O2 stimulates biosynthesis of SA and JA, activating SA/JA signalling and the expression of responsive genes in PCD8 RNAi (pcd8) mutants. Introducing NahG or knocking out PAD4 or NPR1 significantly alleviates the cell death phenotype of pcd8 mutants, while coi1 partially mitigates the pcd8 phenotype. Further exploration revealed that EX1 and GUN1 can partially rescue the pcd8 phenotype by reducing the levels of Uro III and 1O2. Notably, mutations in EX1 mutations but not GUN1, substantially diminish SA content in pcd8 mutants compared to the wild type, implying that EX1 acts as the primary mediator of 1O2 signalling-mediated SA biosynthesis. Moreover, the triple ex1 gun1 pcd8 displays a phenotype similar to ex1. Overall, our findings underscore that the 1O2-induced cell death phenotype requires EX1/GUN1-mediated retrograde signalling in pcd8 mutants, providing novel insights into the interplay between ROS and SA/JA.

8.
Food Chem ; 449: 139190, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38579653

ABSTRACT

Linoleic acid (LA) detection and edible oils discrimination are essential for food safety. Recently, CsPbBr3@SiO2 heterostructures have been widely applied in edible oil assays, while deep insights into solvent effects on their structure and performance are often overlooked. Based on the suitable polarity and viscosity of cyclohexane, we prepared CsPbBr3@SiO2 Janus nanoparticles (JNPs) with high stability in edible oil and fast halogen-exchange (FHE) efficiency with oleylammonium iodide (OLAI). LA is selectively oxidized by lipoxidase to yield hydroxylated derivative (oxLA) capable of reacting with OLAI, thereby bridging LA content to naked-eye fluorescence color changes through the anti-FHE reaction. The established method for LA in edible oils exhibited consistent results with GC-MS analysis (p > 0.05). Since the LA content difference between edible oils, we further utilized chemometrics to accurately distinguish (100%) the species of edible oils. Overall, such elaborated CsPbBr3@SiO2 JNPs enable a refreshing strategy for edible oil discrimination.


Subject(s)
Linoleic Acid , Oxides , Plant Oils , Titanium , Oxides/chemistry , Plant Oils/chemistry , Linoleic Acid/chemistry , Calcium Compounds/chemistry , Solvents/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry
10.
PLoS One ; 19(3): e0300504, 2024.
Article in English | MEDLINE | ID: mdl-38484005

ABSTRACT

Direct recycling of aluminum waste is crucial in sustainable manufacturing to mitigate environmental impact and conserve resources. This work was carried out to study the application of hot press forging (HPF) in recycling AA6061 aluminum chip waste, aiming to optimize operating factors using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Genetic algorithm (GA) strategy to maximize the strength of recycled parts. The experimental runs were designed using Full factorial and RSM via Minitab 21 software. RSM-ANN models were employed to examine the effect of factors and their interactions on response and to predict output, while GA-RSM and GA-ANN were used for optimization. The chips of different morphology were cold compressed into billet form and then hot forged. The effect of varying forging temperature (Tp, 450-550°C), holding time (HT, 60-120 minutes), and chip surface area to volume ratio (AS:V, 15.4-52.6 mm2/mm3) on ultimate tensile strength (UTS) was examined. Maximum UTS (237.4 MPa) was achieved at 550°C, 120 minutes and 15.4 mm2/mm3 of chip's AS: V. The Tp had the largest contributing effect ratio on the UTS, followed by HT and AS:V according to ANOVA analysis. The proposed optimization process suggested 550°C, 60 minutes, and 15.4 mm2 as the optimal condition yielding the maximum UTS. The developed models' evaluation results showed that ANN (with MSE = 1.48%) outperformed RSM model. Overall, the study promotes sustainable production by demonstrating the potential of integrating RSM and ML to optimize complex manufacturing processes and improve product quality.


Subject(s)
Aluminum , Neural Networks, Computer , Temperature , Cold Temperature , Software
12.
Med ; 5(4): 291-310.e5, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38417440

ABSTRACT

BACKGROUND: Immune checkpoint blockade has shown low response rates for advanced breast cancer, and combination strategies are needed. Microwave ablation (MWA) may be a trigger of antitumor immunity. This window-of-opportunity trial (ClinicalTrials.gov: NCT04805736) was conducted to determine the safety and feasibility of preoperative camrelizumab (an anti-PD-1 antibody) combined with MWA in the treatment of early-stage breast cancer. METHODS: Sixty participants were randomized to preoperatively receive single-dose camrelizumab alone (n = 20), MWA alone (n = 20), or camrelizumab+MWA (n = 20). A random number table was used to allocate interventions. The primary outcome was the safety and feasibility of MWA combined with camrelizumab. FINDINGS: Camrelizumab and MWA were well tolerated alone and in combination without delays in prescheduled surgery. No treatment-related grade III/IV adverse events were observed. Different from in the single-dose camrelizumab or MWA group, participants showed stable counts of blood cells after combination therapy. After combination therapy, peripheral CD8+ T cells showed enhanced cytotoxic and effect-memory functions. Clonal expansional CD8+ T cells showed higher cytotoxic activity and effector memory- and tumor-specific signatures than emergent clones after combination therapy. Enhanced interactions between clonal expansional CD8+ T cells and monocytes were observed, suggesting that monocytes contributed to the enhanced functions of clonal expansional CD8+ T cells. Major histocompatibility complex (MHC) class I-related pathways and interferon signaling pathways were activated in monocytes by combination therapy. CONCLUSIONS: Camrelizumab combined with MWA was feasible for early-stage breast cancer. Peripheral CD8+ T cells were activated after combination therapy, dependent on monocytes with activated MHC class I pathways. FUNDING: This study was supported by the Natural Science Foundation of Jiangsu Province (BK20230017).


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/chemically induced , CD8-Positive T-Lymphocytes/metabolism , Microwaves/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects
13.
Mol Ecol Resour ; 24(3): e13924, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38197287

ABSTRACT

The advancement of next-generation sequencing (NGS) technologies has been revolutionary for the field of evolutionary biology. This technology has led to an abundance of available genomes and transcriptomes for researchers to mine. Specifically, researchers can mine for various types of molecular markers that are vital for phylogenetic, evolutionary and ecological studies. Numerous tools have been developed to extract these molecular markers from NGS data. However, due to an insufficient number of well-annotated reference genomes for non-model organisms, it remains challenging to obtain these markers accurately and efficiently. Here, we present GeneMiner, an improved and expanded version of our previous tool, Easy353. GeneMiner combines the reference-guided de Bruijn graph assembly with seed self-discovery and greedy extension. Additionally, it includes a verification step using a parameter-bootstrap method to reduce the pitfalls associated with using a relatively distant reference. Our results, using both experimental and simulation data, showed GeneMiner can accurately acquire phylogenetic molecular markers for plants using transcriptomic, genomic and other NGS data. GeneMiner is designed to be user-friendly, fast and memory-efficient. Further, it is compatible with Linux, Windows and macOS. All source codes are publicly available on GitHub (https://github.com/sculab/GeneMiner) and Gitee (https://gitee.com/sculab/GeneMiner) for easy accessibility and transparency.


Subject(s)
Genomics , Software , Phylogeny , Genomics/methods , Computer Simulation , High-Throughput Nucleotide Sequencing/methods , Algorithms , Sequence Analysis, DNA/methods
14.
Plant Physiol ; 194(4): 2400-2421, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38180123

ABSTRACT

Light-induced de-etiolation is an important aspect of seedling photomorphogenesis. GOLDEN2 LIKE (GLK) transcriptional regulators are involved in chloroplast development, but to what extent they participate in photomorphogenesis is not clear. Here, we show that ELONGATED HYPOCOTYL5 (HY5) binds to GLK promoters to activate their expression, and also interacts with GLK proteins in Arabidopsis (Arabidopsis thaliana). The chlorophyll content in the de-etiolating Arabidopsis seedlings of the hy5 glk2 double mutants was lower than that in the hy5 single mutant. GLKs inhibited hypocotyl elongation, and the phenotype could superimpose on the hy5 phenotype. Correspondingly, GLK2 regulated the expression of photosynthesis and cell elongation genes partially independent of HY5. Before exposure to light, DE-ETIOLATED 1 (DET1) affected accumulation of GLK proteins. The enhanced etioplast development and photosystem gene expression observed in the det1 mutant were attenuated in the det1 glk2 double mutant. Our study reveals that GLKs act downstream of HY5, or additive to HY5, and are likely quantitatively adjusted by DET1, to orchestrate multiple developmental traits during the light-induced skotomorphogenesis-to-photomorphogenesis transition in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Hypocotyl , Light , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Seedlings/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
15.
ACS Nano ; 18(5): 4376-4387, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38270109

ABSTRACT

Harvesting atmospheric water and converting it into electricity play vital roles in advancing next-generation energy conversion systems. However, the current water harvester systems suffer from a weak water capture ability and poor recyclability due to high diffusion barriers and low sorption kinetics, which significantly limit their practical application. Herein, we drew inspiration from the natural "Pump effect" observed in wood and successfully developed a dual "absorption-adsorption" networked MXene aerogel atmospheric water harvester (MAWH) through ice templating and confining LiCl processes, thereby serving multiple purposes of clean water production, passive dehumidification, and power generation. The MAWH benefits from the dual H-bond network of MXene and cellulose nanocrystals (absorption network) and the hygroscopic properties of lithium chloride (adsorption network). Furthermore, its aligned wood-like channel structure efficiently eliminates water nucleation near the 3D network, resulting in fast moisture absorption. The developed MAWH demonstrates a high moisture absorption ability of 3.12 g g-1 at 90% relative humidity (RH), featuring rapid vapor transport rates and durable cyclic performance. When compared with commercial desiccants such as the 4A molecular sieve and silica gel, the MAWH can reduce the RH from 80% to 20% within just 6 h. Most notably, our integrated MAWH-based water harvesting-power generation system achieves a high voltage of ∼0.12 V at 77% RH, showcasing its potential for practical application. These developed MAWHs are considered as high-performance atmospheric water harvesters in the water collection and power generation field.

16.
Clin Breast Cancer ; 24(2): e51-e60, 2024 02.
Article in English | MEDLINE | ID: mdl-37925360

ABSTRACT

PURPOSE: This study aimed to explore a novel position of mammography named axilla view in axillary lymph node (ALN) evaluation in breast cancer. PATIENTS AND METHODS: Patients were prospectively enrolled and scheduled for mammography before surgery. Investigated imaging patterns included mediolateral oblique (2D-MLO) and axilla view (2D-axilla) of mammography, and axilla view of digital breast tomosynthesis (3D-axilla). The correlation of ALN numbers between imaging and pathology was analyzed. Diagnostic performance was analyzed via AUC. RESULTS: 75 patients were included. A larger and clearer axillary region was displayed in axilla view. The total number of ALNs detected under 2D/3D-axilla view was significantly higher than that under 2D-MLO view (4.6 vs. 2.5, P < .001; 5.6 vs. 4.6, P = .034). Correlations between number of positive ALNs detected under 2D/3D-axilla view and pathologically confirmed metastatic ALNs were stronger than 2D-MLO view (Pearson correlation coefficients: 0.7084,0.7044 and 0.4744). The proportion of cases with ≥5 positive ALNs detected under 3D-axilla view was significantly higher than that under 2D-MLO (38.2% vs. 14.7%, P = .028). The overweight and obese group showed a higher AUC value than the underweight and lean group in ALN evaluation, although not significantly (2D-MLO: 0.7643 vs. 0.6458, P = .2656; 2D-axilla: 0.8083 vs. 0.6586, P = .1522; 3D-axilla: 0.8045 vs. 0.6615, P = .1874). This difference was more pronounced in axilla view. CONCLUSION: Axilla view exhibited advantages over conventional MLO view in the extent of axilla displayed by mammography in breast cancer. Further studies with larger sample sizes are needed.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Pilot Projects , Axilla/pathology , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Lymph Nodes/diagnostic imaging , Lymph Nodes/surgery , Lymph Nodes/pathology , Mammography/methods
17.
J Asian Nat Prod Res ; 26(1): 59-68, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38031435

ABSTRACT

A total of 65 phenolic acid compounds were annotated or identified by UHPLC-MS/MS method, among them, 17 p-HAP (p-hydroxyacetophenone) glycosides were firstly targeted profiled based on molecular networking. Their characteristic product ions of MS/MS spectra were found and examined on the guideline of targeted isolation. As a result, a new p-HAP glycoside was thus obtained and determined as 2'-O-caffeoyl-p-HAP-4-O-ß-D-glucopyranoside (33) based on 1D and 2D NMR data. Besides, multicomponents quantitative analysis indicated the distinct regional variability in chemicals distribution of A. japonica, and meanwhile, the contents of p-HAP glycosides from A. japonica were higher than those in A. capillaris as a whole, which further suggested the potential medicinal value of A. japonica.


Subject(s)
Artemisia , Tandem Mass Spectrometry , Glycosides/chemistry , Artemisia/chemistry , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging , Molecular Structure
18.
Plant Physiol ; 194(2): 774-786, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37850886

ABSTRACT

Drought has become one of the most severe abiotic stresses experienced in agricultural production across the world. Plants respond to water deficit via stomatal movements in the leaves, which are mainly regulated by abscisic acid (ABA). A previous study from our lab showed that constitutive expression of maize (Zea mays L.) GOLDEN2-LIKE (GLK) transcription factors in rice (Oryza sativa L.) can improve stomatal conductance and plant photosynthetic capacity under field conditions. In the present study, we uncovered a function of ZmGLK regulation of stomatal movement in rice during drought stress. We found that elevated drought tolerance in rice plants overexpressing ZmGLK1 or GOLDEN2 (ZmG2) was conferred by rapid ABA-mediated stomatal closure. Comparative analysis of RNA-sequencing (RNA-seq) data from the rice leaves and DNA affinity purification sequencing (DAP-seq) results obtained in vitro revealed that ZmGLKs played roles in regulating ABA-related and stress-responsive pathways. Four upregulated genes closely functioning in abiotic stress tolerance with strong binding peaks in the DAP-seq data were identified as putative target genes of ZmGLK1 and ZmG2 in rice. These results demonstrated that maize GLKs play an important role in regulating stomatal movements to coordinate photosynthesis and stress tolerance. This trait is a valuable target for breeding drought-tolerant crop plants without compromising photosynthetic capacity.


Subject(s)
Oryza , Oryza/metabolism , Zea mays/genetics , Zea mays/metabolism , Drought Resistance , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Plant Breeding , Abscisic Acid/metabolism , Droughts , Stress, Physiological/genetics , Gene Expression Regulation, Plant
19.
Cancer Med ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38133211

ABSTRACT

INTRODUCTION: Locoregional recurrent breast cancers have a poor prognosis. Little is known about the prognostic impact of immune microenvironment, and tertiary lymphoid structures (TLSs) in particular have not been reported. Thus, we aimed to characterize the immune microenvironment in locoregional recurrent breast tumors and to investigate its relationship with prognosis. METHODS: We retrospectively included 112 patients with locoregional recurrent breast cancer, and hematoxylin-eosin staining and immunohistochemical staining (CD3, CD4, CD8, CD19, CD38, and CD68) were performed on locoregional recurrent tumor samples. The association of immune cells and TLSs with progression-free survival (PFS) were analyzed by survival analysis. RESULTS: We found more immune cells in the peritumor than stroma. After grouping according to estrogen receptor (ER) status, a low level of peritumoral CD3+ cells in ER+ subgroup (p = 0.015) and a low level of stromal CD68+ cells in ER- subgroup (p = 0.047) were both associated with longer PFS. TLSs were present in 68% of recurrent tumors, and CD68+ cells within TLSs were significantly associated with PFS as an independent prognostic factor (p = 0.035). TLSs and immune cells (CD3, CD38, and CD68) within TLSs were associated with longer PFS in ER- recurrent tumors (p = 0.044, p = 0.012, p = 0.050, p < 0.001, respectively), whereas CD38+ cells within TLSs were associated with shorter PFS in ER+ recurrent tumors (p = 0.037). CONCLUSION: Our study proposes potential predictors for the clinical prognosis of patients with locoregional recurrent breast cancer, emphasizing the prognostic value of immune cells within TLSs, especially CD68+ cells.

20.
Zhongguo Fei Ai Za Zhi ; 26(10): 753-764, 2023 Oct 20.
Article in Chinese | MEDLINE | ID: mdl-37989338

ABSTRACT

BACKGROUND: The switch/sucrose nonfermentable chromatin-remodeling (SWI/SNF) complex is a pivotal chromatin remodeling complex, and the genomic alterations (GAs) of the SWI/SNF complex are observed in several cancer types, correlating with multiple biological features of tumor cells. However, their role in liver metastasis of non-small cell lung cancer (NSCLC) remains unclear. Our study aims to investigate the role and potential mechanisms underlying NSCLC liver metastasis induced by the GAs of SWI/SNF complex. METHODS: The GAs of SWI/SNF complex in NSCLC cell lines (H1299, H23 and H460) were identified by whole-exome sequencing (WES). ARID1A knockout H1299 cell was constructed with the CRISPR/Cas9 technology. The mouse model of liver metastasis from NSCLC was established to simulate lung cancer liver metastasis and observe the metastasis rate under different gene mutation conditions. RNA sequencing and Western blot were conducted for differential gene expression analysis. Immunohistochemistry (IHC) analysis was used to assess protein expression levels of SWI/SNF-regulated target molecules in mouse liver metastases. RESULTS: WES analysis revealed intracellular gene mutations. The animal experiments demonstrated a correlation between the GAs of SWI/SNF complex and a higher liver metastasis rate in immunodeficient mice. Transcriptome sequencing and Western blot analysis showed upregulated expression of ALDH1A1 and APOBEC3B in SWI/SNF-mut cells, particularly in ARID1A-deficient H460 and H1299 sgARID1A cells. IHC staining of mouse liver metastases further demonstrated elevated expression of ALDH1A1 in the H460 and H1299 sgARID1A group. CONCLUSIONS: This study underscores the critical role of the GAs of SWI/SNF complex, such as ARID1A and SMARCA4, in promoting liver metastasis of lung cancer cells. The GAs of SWI/SNF complex may promote liver-specific metastasis by upregulating ALDH1A1 and APOBEC3B expression, providing novel insights into the molecular mechanisms underlying lung cancer liver metastasis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Liver Neoplasms , Lung Neoplasms , Animals , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Mutation , Liver Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...