Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2403294, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657281

ABSTRACT

High performance organic solar cells (OSCs) are usually realized by using post-treatment and/or additive, which can induce the formation of metastable morphology, leading to unfavorable device stability. In terms of the industrial production, the development of high efficiency as-cast OSCs is crucially important, but it remains a great challenge to obtain appropriate active layer morphology and high power conversion efficiency (PCE). Here, efficient as-cast OSCs are constructed via introducing a new polymer acceptor PY-TPT with a high dielectric constant into the D18:L8-BO blend to form a double-fibril network morphology. Besides, the incorporation of PY-TPT enables an enhanced dielectric constant and lower exciton binding energy of active layer. Therefore, efficient exciton dissociation and charge transport are realized in D18:L8-BO:PY-TPT-based device, affording a record-high PCE of 18.60% and excellent photostability in absence of post-treatment. Moreover, green solvent-processed devices, thick-film (300 nm) devices, and module (16.60 cm2) are fabricated, which show PCEs of 17.45%, 17.54%, and 13.84%, respectively. This work brings new insight into the construction of efficient as-cast devices, pushing forward the practical application of OSCs.

2.
Front Bioeng Biotechnol ; 12: 1349010, 2024.
Article in English | MEDLINE | ID: mdl-38425995

ABSTRACT

Polyester plastics are widely used in daily life, but also cause a large amount of waste. Degradation by microbial enzymes is the most promising way for the biobased upcycling of the wastes. However, there is still a shortage of high-performance enzymes, and more efficient polyester hydrolases need to be developed. Here we identified two polyester hydrolases, jmPE13 and jmPE14, from a previously isolated strain Pseudomonas sp. JM16B3. The proteins were recombinantly expressed and purified in E. coli, and their enzymatic properties were characterized. JmPE13 and jmPE14 showed hydrolytic activity towards polyethylene terephthalate (PET) and Poly (butylene adipate-co-terephthalate) (PBAT) at medium temperatures. The enzyme activity and stability of jmPE13 were further improved to 3- and 1.5-fold, respectively, by rational design. The results of our research can be helpful for further engineering of more efficient polyester plastic hydrolases and their industrial applications.

3.
Front Microbiol ; 15: 1324153, 2024.
Article in English | MEDLINE | ID: mdl-38374914

ABSTRACT

Extracellular enzymes play important roles in myxobacteria degrading macromolecules and preying on other microorganisms. Glycoside hydrolases 19 (GH19) are widely present in myxobacteria, but their evolution and biological functions have not been fully elucidated. Here we investigated the comparative secretory proteome of Corallococcus silvisoli c25j21 in the presence of cellulose and chitin. A total of 313 proteins were detected, including 16 carbohydrate-active enzymes (CAZymes), 7 of which were induced by cellulose or chitin, such as GH6, GH13, GH19, AA4, and CBM56. We further analyzed the sequence and structural characteristics of its three GH19 enzymes to understand their potential functions. The results revealed that myxobacterial GH19 enzymes are evolutionarily divided into two clades with different appended modules, and their different amino acid compositions in the substrate binding pockets lead to the differences in molecular surface electrostatic potentials, which may, in turn, affect their substrate selectivity and biological functions. Our study is helpful for further understanding the biological functions and catalytic mechanisms of myxobacterial CAZymes.

4.
Nanomaterials (Basel) ; 12(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36500859

ABSTRACT

Hysteretic pressure-sensitive permeability of nanohybrids composed of substantial nanopores is critical to characterizing fluid flow through nanoporous media. Due to the nanoscale effect (gas slippage), complex and heterogeneous pore structures of nanoporous media, the essential controls on permeability hysteresis of nanohybrids are not determined. In this study, a hysteretic pressure sensitive permeability model for nitrogen flow through dry nanoporous media is proposed. The derived model takes into account the nanoscale effect and pore deformation due to effective stress. The model is validated by comparing it with the experimental data. The results show that the calculated permeability and porosity are consistent with the measured results with the maximum relative error of 6.08% and 0.5%, respectively. Moreover, the hysteretic pressure-sensitive permeability of nanohybrids is related to effective stress, gas slippage, pore microstructure parameters, grain quadrilateral angle, and the loss rate of grain quadrilateral angle. The nanoscale effect is crucial to the permeability of nanoporous media. In addition, as impacted by the comprehensive impact of multiple relevant influential parameters, permeability during the pressure unloading process is not a monotonous function but presents complicated shapes. The proposed model can explain, quantify, and predict the permeability hysteresis effect of nanoporous media reasonably well.

5.
Polymers (Basel) ; 14(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365615

ABSTRACT

Polymer flooding is used to improve the viscosity of an injectant, thereby decreasing the mobility ratio and improving oil displacement efficiency in the reservoir. Thanks to their environmentally benign nature, natural polymers are receiving prodigious attention for enhanced oil recovery. Herein, the rheology and oil displacement properties of okra mucilage were investigated for its enhanced oil recovery potential at a high temperature and high pressure (HTHP) in carbonate cores. The cellulosic polysaccharide used in the study is composed of okra mucilage extracted from okra (Abelmoschus esculentus) via a hot water extraction process. The morphological property of okra mucilage was characterized with Fourier transform infrared (FTIR), while the thermal stability was investigated using a thermogravimetric analyzer (TGA). The rheological property of the okra mucilage was investigated for seawater salinity and high-temperature conditions using a TA rheometer. Finally, an oil displacement experiment of the okra mucilage was conducted in a high-temperature, high-pressure core flooding equipment. The TGA analysis of the biopolymer reveals that the polymeric solution was stable over a wide range of temperatures. The FTIR results depict that the mucilage is composed of galactose and rhamnose constituents, which are essentially found in polysaccharides. The polymer exhibited pseudoplastic behavior at varying shear rates. The viscosity of okra mucilage was slightly reduced when aged in seawater salinity and at a high temperature. Nonetheless, the cellulosic polysaccharide exemplified sufficiently good viscosity under high-temperature and high-salinity (HTHS) conditions. Finally, the oil recovery results from the carbonate core plug reveal that the okra mucilage recorded a 12.7% incremental oil recovery over waterflooding. The mechanism of its better displacement efficiency is elucidated.

6.
Macromol Rapid Commun ; 43(18): e2200201, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35363402

ABSTRACT

Hole transporting layer-free organic solar cells with simplified device structures are desirable for their mass production. In this work, a p-dopant of organic molybdenum peroxide (OMP) to dope nonfullerene active layers to produce p-doped surface on the active layer is adopted. The OMP can effectively dope widely used polymer donors of nonfullerene organic solar cells, i.e., PTB7-Th, PBDB-T, and even PBDB-T-2F that has a very deep highest occupied molecular orbital (HOMO) energy level of -5.47 eV. The doping mechanism lies in the strong oxidizing property of peroxide groups of the OMP leading to superior doping properties. In the end, hole transporting layer-free nonfullerene organic solar cells with the device structure of ITO/PEI-Zn/PBDB-T-2F:IT-4F/Ag are fabricated. The cells show a power conversion efficiency of 12.2% and good thermal stability.

7.
Materials (Basel) ; 15(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35407858

ABSTRACT

Surfactant flooding is an enhanced oil recovery method that recovers residual and capillary trapped oil by improving pore-scale displacement efficiency. Low retention of injected chemicals is desired to ensure an economic and cost-effective recovery process. This paper examines the adsorption behavior of a novel gemini cationic surfactant on carbonate cores. The rock cores were characterized using an X-ray diffraction (XRD) spectroscope. In addition, the influence of critical parameters on the dynamic adsorption of the cationic gemini surfactant was studied by injecting the surfactant solution through carbonate cores in a core flooding apparatus until an equilibrium state was achieved. The concentration of surfactant was observed using high performance liquid chromatography. Experimental results showed that an increasing surfactant concentration causes higher retention of the surfactant. Moreover, increasing the flow rate to 0.2 mL/min results in lowering the surfactant retention percentage to 17%. At typical high salinity and high temperature conditions, the cationic gemini surfactant demonstrated low retention (0.42 mg/g-rock) on an Indiana limestone core. This study extends the frontier of knowledge in gemini surfactant applications for enhanced oil recovery.

8.
Adv Colloid Interface Sci ; 303: 102634, 2022 May.
Article in English | MEDLINE | ID: mdl-35305443

ABSTRACT

The selection of appropriate chemicals and the synthetic method plays an important role in oilfield application. The objectives of this study are to describe the various synthetic route for the preparation of fluorinated surfactants and highlight their oilfield applications. Fluorinated surfactants are the type of surfactants where the hydrophobic tail is either partially fluorinated or replaced totally with fluorine molecules. Fluorinated surfactants have distinct properties compared to corresponding hydrocarbon surfactants such as lower surface tension, better efficiency in lowering the interfacial tension, both oleophobic and hydrophobic nature, high thermal stability, and better chemical tolerance. These properties make them a material of choice for several applications which include but are not limited to fire-fighting, household items, foaming, coating, and paints. Despite these attractive properties, environmental concerns associated with fluorinated surfactants is a major hurdle in extending the application of such surfactants. This review discusses the various synthetic routes for the synthesis of different classes of surfactants such as cationic, anionic, non-ionic, and zwitterionic surfactants. The fundamental surface/interface properties of the synthesized surfactants are also highlighted. In addition, the review highlights the application of fluorinated surfactants in the oil & gas industry.

9.
Molecules ; 27(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35208992

ABSTRACT

Static contact angle measurement is a widely applied method for wettability assessment. Despite its convenience, it suffers from errors induced by contact angle hysteresis, material heterogeneity, and other factors. This paper discusses the oil drop spreading phenomenon that was frequently observed during contact angle measurements. Experimental tests showed that this phenomenon is closely related to surfactants in the surrounding phase, the remaining oil on the rock surface, and oil inside the surrounding phase. A modified contact angle measurement process was proposed. In the modified method, deionized water was used as the surrounding phase, and a rock surface cleaning step was added. Subsequent measurements showed a very low chance of oil drop spreading and improved precision. A further comparison study showed that, when the surrounding phase was deionized water, the measured contact angle values tended to be closer to intermediate-wet conditions compared to the values measured in clean surfactant solutions. This difference became more significant when the surface was strongly water-wet or strongly oil-wet. As a result, the developed process has two prerequisites: that the in-situ contact angle values inside surfactant solutions are not required, and that the wettability alteration induced by the surfactant solution is irreversible.

10.
Langmuir ; 38(9): 2895-2905, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35192368

ABSTRACT

Coarsening or Oswald ripening, induced by interbubble gas diffusion, is considered to dominate foam structure evolution in porous media. We present the first study of trapped foam coarsening dynamics under realistic deep reservoir conditions (up to 3200 psi/22 MPa of pore pressure and 100 °C of temperature) in a high-pressure and high-temperature microfluidic system. The findings are expected to help predict foam structure evolution in applications such as enhanced oil recovery and CO2 geological sequestration. It is shown that, in porous media, larger bubbles grow at the expense of smaller bubbles. The growth rate of the average bubble area (⟨a⟩) over time shows a long-term linear increase when ⟨a⟩ is between 1/5 and 1/2 of the average pore size. The foam coarsening kinetics are determined by the liquid film permeability, gas-liquid interfacial tension, and the molar volume of the dispersed phase. In summary, foams prepared with less water-soluble gases (e.g., N2 and air) and lower foam quality show slower coarsening kinetics due to a lower film permeability. Foam coarsening is more sensitive to surfactant concentration (than surfactant type), as it determines the interfacial tension that controls the mass transfer driving force (capillary pressure difference). The transport properties of the dispersed phase depend strongly on its density, which increases with increasing pore pressure and decreasing temperature. At the same experimental conditions, gas CO2 foam shows a 10-fold faster coarsening rate than N2 foam. However, dense (i.e., liquid and supercritical) CO2 foams show a remarkable 20-500-fold reduction in coarsening kinetics compared with gas N2 and CO2 foams due to the significantly reduced mass transfer driving forces. In a sense, trapped CO2 foam can be stronger than N2 foam at high-pressure and high-temperature conditions.

11.
Mitochondrial DNA B Resour ; 6(8): 2436-2438, 2021.
Article in English | MEDLINE | ID: mdl-34350359

ABSTRACT

We first reported the complete mitochondrial genome of Tenuilapotamon latilum kaiyangense (Decapoda: Brachyura: Potamoidea). The genome is 19,294 bp in length, including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a control region. The whole mitochondrial genome is characterized by the apparent AT bias (74.19%). This research provides DNA data for further researches on population genetics and phylogenetics.

12.
ACS Omega ; 6(24): 15867-15877, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34179630

ABSTRACT

The interactions of clays with freshwater in unconventional tight sandstones can affect the mechanical properties of the rock. The hydraulic fracturing technique is the most successful technique to produce hydrocarbons from unconventional tight sandstone formations. Knowledge of clay minerals and their chemical interactions with fracturing fluids is extremely vital in the optimal design of fracturing fluids. In this study, quaternary ammonium-based dicationic surfactants are proposed as clay swelling inhibitors in fracturing fluids to reduce the fractured face skin. For this purpose, several coreflooding and breakdown pressure experiments were conducted on the Scioto sandstone samples, and the rock mechanical properties of the flooded samples after drying were assessed. Coreflooding experiments proceeded in a way that the samples were flooded with the investigated fluid and then postflooded with deionized water (DW). Rock mechanical parameters, such as compressive strength, tensile strength, and linear elastic properties, were evaluated using unconfined compressive strength test, scratch test, indirect Brazilian disc test, and breakdown pressure test. The performance of novel synthesized surfactants was compared with commercially used clay stabilizing additives such as sodium chloride (NaCl) and potassium chloride (KCl). For comparison, base case experiments were performed with untreated samples and samples treated with DW. Scioto sandstone samples with high illite contents were used in this study. Results showed that the samples treated with conventional electrolyte solutions lost permeability up to 65% when postflooded with DW. In contrast, fracturing fluid containing surfactant solutions retained the original permeability even after being postflooded with DW. Conventional clay stabilizing additives led to the swelling of clays caused by high compression and tensile strength of the rock when tested at dry conditions. Consequently, the rock fractures at a higher breakdown pressure. However, novel dicationic surfactants do not cause any swelling, and therefore, the rock fractures at the original breakdown pressure.

13.
Gene ; 766: 145077, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32941951

ABSTRACT

Newcastle disease virus (NDV) is a contagious poultry paramyxovirus, leading to substantial economic losses to the poultry industry. Here, RNA-seq was carried out to investigate the altered expression of immune-related genes in chicken thymus within 96 h in response to NDV infection. In NDV-infected chicken thymus tissues, comparative transcriptome analysis revealed 1386 differentially expressed genes (DEGs) at 24 h with 989 up- and 397 down-regulated genes, 728 DEGs at 48 h with 567 up- and 161 down-regulated genes, 1514 DEGs at 72 h with 1016 up- and 498 down-regulated genes, and 1196 DEGs at 96 h with 522 up- and 674 down-regulated genes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these candidate targets mainly participate in biological processes or biochemical, metabolic and signal transduction processes. Notably, there is large enrichment in biological processes, cell components and metabolic processes, which may be related to NDV pathogenicity. In addition, the expression of five immune-related DEGs identified by RNA-seq was validated by quantitative real-time polymerase chain reaction (qRT-PCR). Our results indicated that the expression levels of AvBD5, IL16, IL22 and IL18R1 were obviously up-regulated, and Il-18 expression was also changed, but not significantly, which play key roles in the defense against NDV. Overall, we identified several candidate targets that may be involved in the regulation of NDV infection, which provide new insights into the complicated regulatory mechanisms of virus-host interactions, and explore new strategies for protecting chickens against the virus.


Subject(s)
Chickens/genetics , Chickens/immunology , Newcastle Disease/genetics , Newcastle Disease/immunology , Newcastle disease virus/immunology , Transcriptome/genetics , Viral Vaccines/immunology , Animals , Chickens/virology , Down-Regulation/immunology , Gene Expression Profiling/methods , Newcastle Disease/virology , Poultry Diseases/genetics , Poultry Diseases/immunology , Poultry Diseases/virology , Sequence Analysis, RNA/methods , Transcriptome/immunology , Up-Regulation/immunology
14.
Mitochondrial DNA B Resour ; 5(1): 984-985, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-33366838

ABSTRACT

Potamiscus motuoensis is the only one freshwater crab species distributed in Yarlung Zangbo River Grand Canyon and its complete mitochondrial genome was obtained for the first time. The complete mitochondrial genome of P. motuoensis is 17,971 bp in length, including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region. In addition, the mitogenome has 19 noncoding regions ranging from 1 to 1396 bp in length. The report of the mitochondrial genome will enrich the species diversity of Yarlung Zangbo River Grand Canyon and provide data support for further research.

15.
ACS Omega ; 5(29): 18123-18133, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32743186

ABSTRACT

To recover the remaining oil after water flooding, amphoteric surfactant-sulfonated polymer (S-P) flooding has attracted attention as a tertiary oil recovery technique. Oil recovery by S-P flooding not only is influenced by reservoir heterogeneity but also depends on chemical adsorption and interactions of S-P solution with the surface of rocks. This paper presents comprehensive laboratory results related to the dynamic adsorption, resistance factor (RF), residual resistance factor (RRF), and adsorbed layer thickness of S-P solution on the surface of carbonate rocks. Three core flooding experiments were conducted. The S-P solution was composed of an amphoteric surfactant (0.2 wt %) and sulfonated polymer solution (0.2 wt %) in seawater. The S-P solution was injected until the effluent concentration reached the inlet concentration. Seawater was injected after S-P injection to displace S-P solution until the effluent concentration reduced to a minimum value or constant value for desorption study. Total organic carbon (TOC) and Hyamine methods were used to determine the adsorption of the polymer and surfactant, respectively. The individual amount of dynamic adsorption and the total amount of adsorption of S-P solution onto carbonate rock were determined and compared with the results of single adsorption of a surfactant solution published previously. The residual resistance factor, resistance factor, and adsorbed layer thickness of S-P solution on carbonate rocks were calculated based on the differential pressure before and after injecting the S-P solution. We found that the dynamic adsorption, RF, RRF, and adsorbed layer thickness of the S-P solution strongly depends on pore geometry or reservoir properties. Some of the relationships are proposed for the first time. The loss of injectivity and liquid permeability during S-P solution injection are evaluated in detail in this paper. This paper presents insights into the dynamic adsorption, residual resistance factor, resistance factor, adsorbed layer thickness, and injectivity of S-P solution on carbonate rocks with reservoir parameters, which could help in designing the chemical enhanced oil recovery process in carbonate reservoirs.

16.
Mitochondrial DNA B Resour ; 5(3): 2357-2359, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-33457789

ABSTRACT

The complete mitochondrial genome of Chinapotamon maolanense was obtained for the first time. The complete mitochondrial genome of C. maolanense is 17,130 bp in length, including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region. In addition, the mitogenome has 18 noncoding regions ranging from 1 to 1553 bp in length.

17.
ACS Omega ; 5(51): 33395-33405, 2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33403302

ABSTRACT

The reservoir heterogeneity is the major cause of poor volumetric sweep efficiency in sandstone and carbonate reservoirs. Displacing fluids (water, chemical solution, gas, and supercritical CO2 (sc-CO2)) flow toward the high permeable zone. A significant fraction of oil remains in the low permeable zone due to the permeability contrast. This study used in situ sc-CO2 emulsion as a conformance control agent to plug the high permeable zone and improve the low permeable zone's volumetric sweep efficiency in carbonate formation. We investigated the effect of two types of conformance control patterns and the size of sc-CO2 emulsion on tertiary oil recovery performance by sc-CO2 miscible injection for carbonate reservoirs at reservoir conditions. The conformance control patterns are achieved using two different approaches. In the first approach, the low permeable zone was isolated, and the diverting gel system, a 0.4 pore volume slug, was injected into a high permeable zone. In the second approach, the simultaneous injection of the diverting gel system, a 0.2 pore volume slug, was done on both the low and high permeable zones. The first sc-CO2 injection was conducted as a tertiary oil recovery mode to recover the remaining oil after water flooding. The diverting gel system was injected after the first sc-CO2 flood for the conformance control. The second or post sc-CO2 injection was conducted after the diverting gel system injection. The diverting gel system used in this study consisted of a polymer and a surfactant. An in situ emulsion was generated when the injected diverting gel system interacts with the sc-CO2 in the core plug. Results obtained from dual-core core flooding experiments suggested that the in situ sc-CO2 emulsion was generated successfully in the formation based on the different pressure increases and observation of the dual-core core flooding experiments. The volumetric sweep efficiency and oil recovery in both conformance control patterns were improved. The production performances were also compared for both conformance control models before and after the diverting gel system injection. The conformance control model 2 (simultaneous injection of the diverting gel system into low and high permeability cores) has a better choice to be applied in field application due to high recovery with a small sc-CO2 emulsion easy operation in the field.

18.
Zookeys ; 873: 9-23, 2019.
Article in English | MEDLINE | ID: mdl-31534382

ABSTRACT

A new species of Mediapotamon Türkay & Dai, 1997 from a karst system in southwest China is described. The new species can be separated from congeners by the combination of a sharp and distinct epibranchial tooth, the anterolateral region lined with few scattered granules, the terminal segment of the male first gonopod distinctly bent with a constant diameter, and the position of the female vulvae. Mitochondrial 16S rDNA genetic data was used to investigate the systematic position of the new species, which is supported as a new taxon.

19.
Mitochondrial DNA B Resour ; 4(2): 2451-2453, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-33365581

ABSTRACT

We report the complete mitochondrial genome of Sinolapotamon patellifer for the first time, which is found to be 16,547 base pairs in length, and contains 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA), and one non-coding AT-rich region known as the D-loop. In addition, the mitogenome has 17 intergenic regions ranging from 1 to 1512 bp in length. The mitochondrial genome of S. patellifer is the first mitochondrial genome under the genus Sinolapamon, providing DNA data for species identification, enriching the species diversity of Brachyura, and providing a basis for further studies on population genetics and phylogenetics.

20.
Mitochondrial DNA B Resour ; 4(2): 2482-2484, 2019 Jul 13.
Article in English | MEDLINE | ID: mdl-33365592

ABSTRACT

In this study, we first obtained the complete mitochondrial genome of Aparapoamon similium (Decapoda: Brachyura). The complete mitochondrial genome is 19,236 bp in length and includes 37 typical genes (13 protein-coding genes, 22 tRNAs genes, 2 rRNAs genes, and 1 putative control region). The whole mitochondrial genome is characterized by the apparent AT bias (72.82%). BI and ML phylogenetic analysis based on 67 mitochondrial genomes of Brachyura species show a highly similar topology structure with high bootstrap supported. The results reveal the close relationship between A. similium and Potamiscus motuoense. This study would establish a solid data foundation for further diversification studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...