Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 395
Filter
1.
J Nanobiotechnology ; 22(1): 385, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951822

ABSTRACT

BACKGROUND: Numerous studies have confirmed the involvement of extracellular vesicles (EVs) in various physiological processes, including cellular death and tissue damage. Recently, we reported that EVs derived from ischemia-reperfusion heart exacerbate cardiac injury. However, the role of EVs from healthy heart tissue (heart-derived EVs, or cEVs) on myocardial ischemia-reperfusion (MI/R) injury remains unclear. RESULTS: Here, we demonstrated that intramyocardial administration of cEVs significantly enhanced cardiac function and reduced cardiac damage in murine MI/R injury models. cEVs treatment effectively inhibited ferroptosis and maintained mitochondrial homeostasis in cardiomyocytes subjected to ischemia-reperfusion injury. Further results revealed that cEVs can transfer ATP5a1 into cardiomyocytes, thereby suppressing mitochondrial ROS production, alleviating mitochondrial damage, and inhibiting cardiomyocyte ferroptosis. Knockdown of ATP5a1 abolished the protective effects of cEVs. Furthermore, we found that the majority of cEVs are derived from cardiomyocytes, and ATP5a1 in cEVs primarily originates from cardiomyocytes of the healthy murine heart. Moreover, we demonstrated that adipose-derived stem cells (ADSC)-derived EVs with ATP5a1 overexpression showed much better efficacy on the therapy of MI/R injury compared to control ADSC-derived EVs. CONCLUSIONS: These findings emphasized the protective role of cEVs in cardiac injury and highlighted the therapeutic potential of targeting ATP5a1 as an important approach for managing myocardial damage induced by MI/R injury.


Subject(s)
Extracellular Vesicles , Mice, Inbred C57BL , Mitochondrial Proton-Translocating ATPases , Myocardial Reperfusion Injury , Myocytes, Cardiac , Animals , Extracellular Vesicles/metabolism , Mice , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Male , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Myocardium/metabolism , Myocardium/pathology , Reactive Oxygen Species/metabolism , Ferroptosis/drug effects , Disease Models, Animal
2.
Biomed Pharmacother ; : 117002, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960836

ABSTRACT

This review provides an in-depth examination of the role that tumor-associated macrophages (TAMs) play in the progression of prostate cancer (PCa), with a particular focus on the factors influencing the polarization of M1 and M2 macrophages and the implications of targeting these cells for cancer progression. The development and prognosis of PCa are significantly influenced by the behavior of macrophages within the tumor microenvironment. M1 macrophages typically exhibit anti-tumor properties by secreting pro-inflammatory cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α), thereby enhancing the immune response. Conversely, M2 macrophages contribute to tumor cell migration and invasion through the production of factors like arginase-1 (Arg1) and interleukin-10 (IL-10). This review not only explores the diverse factors that affect macrophage polarization but also delves into the potential therapeutic strategies targeting macrophage polarization, including the critical roles of non-coding RNA and exosomes in regulating this process. The polarization state of macrophages is highlighted as a key determinant in PCa progression, offering a novel perspective for clinical treatment. Future research should concentrate on gaining a deeper understanding of the molecular mechanisms underlying macrophage polarization and on developing effective targeted therapeutic strategies. The exploration of the potential of combination therapies to improve treatment efficacy is also emphasized. By emphasizing the importance of macrophages as a therapeutic target in PCa, this review aims to provide valuable insights and research directions for clinicians and researchers.

4.
Colloids Surf B Biointerfaces ; 241: 113992, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38833960

ABSTRACT

In order to reduce the cardiotoxicity of doxorubicin (DOX) and improve its antitumor effect, dihydroartemisinin (DHA) and DOX prodrug (DOX-S-DHA) synthesized via a single sulfur bond was used with TEPP-46 to prepare nano-liposomes (DOX-S-DHA@TEPP-46 Lips). In which, TEPP-46 was expected to exert p53 bidirectional regulation to promote the synergistic antitumor effect of DOX and DHA while reducing cardiotoxicity. DOX-S-DHA@TEPP-46 Lips exhibited uniform particle size, good stability, and excellent redox-responsive activity. DOX-S-DHA@TEPP-46 Lips could significantly inhibit the proliferation of tumor cells, but had less cytotoxicity on normal cells. The presence of TEPP-46 increased the content of p53 protein, which further induced tumor cell apoptosis. DOX-S-DHA@TEPP-46 Lips had satisfactory long circulation to enhance the antitumor efficacy and reversed the cardiotoxicity of DOX in B16-F10 tumor-bearing mice. In conclusion, DOX-S-DHA@TEPP-46 Lips provides a new insight on creating sophisticated redox-sensitive nano-liposomes for cancer therapy as well as the decreased cardiotoxicity of DOX.

5.
BMC Public Health ; 24(1): 1602, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879469

ABSTRACT

BACKGROUND: Allostatic load, the cumulative strain resulting from chronic stress responses, has been linked to disease occurrence and progression, yet research quantifying this relationship is limited. This study aimed to explore the relationship between allostatic load score (ALS) levels and the degree of hepatic steatosis and fibrosis. METHODS: Data from the National Health and Nutrition Examination Survey 2017-2020 were analyzed. The ALS was based on the statistical distribution, assigning one point for each biomarker if it was in the highest risk quartile, and then summing them to generate the ALS score (range, 0-8). The multivariate linear regression was employed to analyze the association between the controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) with ALS. Additionally, multinomial logistic regression was used to investigate the association between ALS and the degree of hepatic steatosis and fibrosis. RESULTS: Participants had a weighted mean age of 52.69 years and 56.14% were female. In the multivariate linear regression analysis, ALS showed a significant positive correlation with CAP (ß = 15.56, 95% CI: 14.50-16.62) and LSM (ß = 0.58, 95% CI: 0.48-0.67). Age, healthy dietary level, and PIR had significant interactions with this positive correlation. In the multinomial logistic regression analysis, ALS exhibited a significant positive correlation with different degrees of hepatic steatosis and fibrosis. Consistency of the results was observed in sensitivity analyses using clinical thresholds of ALS. CONCLUSIONS: Comprehensive clinical assessment targeting load adaptation may enhance the effectiveness of risk assessment in patients with hepatic steatosis and fibrosis.


Subject(s)
Allostasis , Fatty Liver , Liver Cirrhosis , Nutrition Surveys , Humans , Female , Male , Allostasis/physiology , Middle Aged , Fatty Liver/physiopathology , Adult , Aged , Cross-Sectional Studies , Risk Factors
6.
Front Cell Infect Microbiol ; 14: 1358801, 2024.
Article in English | MEDLINE | ID: mdl-38895732

ABSTRACT

Background: Rapid and accurate diagnosis of the causative agents is essential for clinical management of bloodstream infections (BSIs) that might induce sepsis/septic shock. A considerable number of suspected sepsis patients initially enter the health-care system through an emergency department (ED), hence it is vital to establish an early strategy to recognize sepsis and initiate prompt care in ED. This study aimed to evaluate the diagnostic performance and clinical value of droplet digital PCR (ddPCR) assay in suspected sepsis patients in the ED. Methods: This was a prospective single-centered observational study including patients admitted to the ED from 25 October 2022 to 3 June 2023 with suspected BSIs screened by Modified Shapiro Score (MSS) score. The comparison between ddPCR and blood culture (BC) was performed to evaluate the diagnostic performance of ddPCR for BSIs. Meanwhile, correlative analysis between ddPCR and the inflammatory and prognostic-related biomarkers were conducted to explore the relevance. Further, the health economic evaluation of the ddPCR was analyzed. Results: 258 samples from 228 patients, with BC and ddPCR performed simultaneously, were included in this study. We found that ddPCR results were positive in 48.13% (103 of 214) of episodes, with identification of 132 pathogens. In contrast, BC only detected 18 positives, 88.89% of which were identified by ddPCR. When considering culture-proven BSIs, ddPCR shows an overall sensitivity of 88.89% and specificity of 55.61%, the optimal diagnostic power for quantifying BSI through ddPCR is achieved with a copy cutoff of 155.5. We further found that ddPCR exhibited a high accuracy especially in liver abscess patients. Among all the identified virus by ddPCR, EBV has a substantially higher positive rate with a link to immunosuppression. Moreover, the copies of pathogens in ddPCR were positively correlated with various markers of inflammation, coagulation, immunity as well as prognosis. With high sensitivity and specificity, ddPCR facilitates precision antimicrobial stewardship and reduces health care costs. Conclusions: The multiplexed ddPCR delivers precise and quantitative load data on the causal pathogen, offers the ability to monitor the patient's condition and may serve as early warning of sepsis in time-urgent clinical situations as ED. Importance: Early detection and effective administration of antibiotics are essential to improve clinical outcomes for those with life-threatening infection in the emergency department. ddPCR, an emerging tool for rapid and sensitive pathogen identification used as a precise bedside test, has developed to address the current challenges of BSI diagnosis and precise treatment. It characterizes sensitivity, specificity, reproducibility, and absolute quantifications without a standard curve. ddPCR can detect causative pathogens and related resistance genes in patients with suspected BSIs within a span of three hours. In addition, it can identify polymicrobial BSIs and dynamically monitor changes in pathogenic microorganisms in the blood and can be used to evaluate antibiotic efficacy and survival prognosis. Moreover, the copies of pathogens in ddPCR were positively correlated with various markers of inflammation, coagulation, immunity. With high sensitivity and specificity, ddPCR facilitates precision antimicrobial stewardship and reduces health care costs.


Subject(s)
Early Diagnosis , Emergency Service, Hospital , Polymerase Chain Reaction , Sepsis , Humans , Prospective Studies , Sepsis/diagnosis , Sepsis/microbiology , Male , Female , Middle Aged , Aged , Polymerase Chain Reaction/methods , Sensitivity and Specificity , Biomarkers/blood , Blood Culture/methods , Adult
7.
J Ethnopharmacol ; 331: 118293, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38705430

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Da-Chai-Hu-Tang (DCHT), a Chinese traditional herbal compound, has been utilized for the treatment of Hepatic diseases in China for over 1800 years. The DCHT formula contains eight herbals: Bupleurum chinense DC. (chaihu), Scutellaria baicalensis Georgi (huangqin), Paeonia lactiflora Pall. (baishao), Pinellia ternata (Thunb.) Makino (banxia), Rheum officinale Baill. (dahuang), Citrus × aurantium L. (zhishi), Zingiber officinale Roscoe (shengjiang), Ziziphus jujuba Mill. (dazao). Clinical studies have demonstrated the effectiveness of DCHT in hepatocellular carcinoma (HCC) and its ability to enhance the immunity of patients with hepatocellular carcinoma. A total of 20 Chinese articles have been published on the use of DCHT in treating HCC. AIM OF THE STUDY: The study aimed to validate the effect of DCHT in HCC cells and to identify related targets (TP53, AKT1, BCL2, STAT3) in treating HCC by DCHT in vitro experiments. MATERIALS AND METHODS: Cell proliferation and migration were investigated in vitro. Flow cytometry analysis was used to evaluate the cell cycle and apoptosis. Apoptotic bodies in HepG2 cells were observed using a confocal microscope. Biochemical detection was employed to analyze LDH release, MDA levels, and SOD levels. Bioinformatics analysis was used to predict core targets between DCHT and HCC, as well as potential signaling pathways. The protein levels of metastasis-associated, apoptosis, and PI3K, AKT, p-AKT, and STAT3 were further determined through Western blotting. RESULTS: Following treatment with DCHT, the inhibition of viability, migration, and G2/M arrest was observed in HepG2 cells. Flow cytometry analysis and Morphological apoptosis studies provided evidence that DCHT could induce apoptosis in HepG2 cells. Biochemical detection revealed that DCHT could increase LDH release and the level of MDA, and inhibit the viability of the SOD. Bioinformatics analysis identified key targets such as TP53, AKT1, BCL2, STAT3. The PI3K/AKT/STAT3 signaling pathway emerged as a critical pathway in the KEGG enrichment analysis. Western blotting results indicated that DCHT could enhance the expression of E-cadherin, p53, and Bax, while reducing the content of N-cadherin, Bcl-2, PI3K, p-AKT, AKT1, and STAT3. CONCLUSIONS: The results proved that DCHT could inhibit the progression and metastasis of HCC by regulating the expression of E-cadherin, N-cadherin, p53, Bax, Bcl-2, PI3K, p-AKT, AKT, and STAT3 through the PI3K/AKT/STAT3 signaling pathway.


Subject(s)
Apoptosis , Cell Cycle Checkpoints , Drugs, Chinese Herbal , Liver Neoplasms , Proto-Oncogene Proteins c-akt , STAT3 Transcription Factor , Humans , STAT3 Transcription Factor/metabolism , Apoptosis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Hep G2 Cells , Drugs, Chinese Herbal/pharmacology , Cell Cycle Checkpoints/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects
8.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673847

ABSTRACT

Anthocyanins are ubiquitous pigments derived from the phenylpropanoid compound conferring red, purple and blue pigmentations to various organs of horticultural crops. The metabolism of flavonoids in the cytoplasm leads to the biosynthesis of anthocyanin, which is then conveyed to the vacuoles for storage by plant glutathione S-transferases (GST). Although GST is important for transporting anthocyanin in plants, its identification and characterization in eggplant (Solanum melongena L.) remains obscure. In this study, a total of 40 GST genes were obtained in the eggplant genome and classified into seven distinct chief groups based on the evolutionary relationship with Arabidopsis thaliana GST genes. The seven subgroups of eggplant GST genes (SmGST) comprise: dehydroascorbate reductase (DHAR), elongation factor 1Bγ (EF1Bγ), Zeta (Z), Theta(T), Phi(F), Tau(U) and tetra-chlorohydroquinone dehalogenase TCHQD. The 40 GST genes were unevenly distributed throughout the 10 eggplant chromosomes and were predominantly located in the cytoplasm. Structural gene analysis showed similarity in exons and introns within a GST subgroup. Six pairs of both tandem and segmental duplications have been identified, making them the primary factors contributing to the evolution of the SmGST. Light-related cis-regulatory elements were dominant, followed by stress-related and hormone-responsive elements. The syntenic analysis of orthologous genes indicated that eggplant, Arabidopsis and tomato (Solanum lycopersicum L.) counterpart genes seemed to be derived from a common ancestry. RNA-seq data analyses showed high expression of 13 SmGST genes with SmGSTF1 being glaringly upregulated on the peel of purple eggplant but showed no or low expression on eggplant varieties with green or white peel. Subsequently, SmGSTF1 had a strong positive correlation with anthocyanin content and with anthocyanin structural genes like SmUFGT (r = 0.9), SmANS (r = 0.85), SmF3H (r = 0.82) and SmCHI2 (r = 0.7). The suppression of SmGSTF1 through virus-induced gene silencing (VIGs) resulted in a decrease in anthocyanin on the infiltrated fruit surface. In a nutshell, results from this study established that SmGSTF1 has the potential of anthocyanin accumulation in eggplant peel and offers viable candidate genes for the improvement of purple eggplant. The comprehensive studies of the SmGST family genes provide the foundation for deciphering molecular investigations into the functional analysis of SmGST genes in eggplant.


Subject(s)
Anthocyanins , Gene Expression Regulation, Plant , Glutathione Transferase , Solanum melongena , Anthocyanins/metabolism , Anthocyanins/biosynthesis , Arabidopsis/genetics , Arabidopsis/metabolism , Chromosomes, Plant/genetics , Fruit/genetics , Fruit/metabolism , Genome, Plant , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum melongena/enzymology , Solanum melongena/genetics , Solanum melongena/metabolism
9.
Sci Total Environ ; 923: 171504, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38460690

ABSTRACT

Insect-plant interactions are among importantly ecological processes, and rapid environmental changes such as temperature and resource fluctuations can disrupt long-standing insect-plant interactions. While individual impacts of climate warming, atmospheric nitrogen (N) deposition, and plant provenance on insect-plant interactions are well studied, their joint effects on insect-plant interactions are less explored in ecologically realistic settings. To this end, we performed five experiments with native and invasive Solidago canadensis populations from home and introduced ranges and two insect herbivores (leaf-chewing Spodoptera litura and sap-sucking Corythucha marmorata) in the context of climate warming and N deposition. We determined leaf defensive traits, feeding preference, and insect growth and development, and quantified the possible associations among climate change, host-plant traits, and insect performance with structural equation modeling. First, native S. canadensis populations experienced higher damage by S. litura but lower damage by C. marmorata than invasive S. canadensis populations in the ambient environment. Second, warming decreased the leaf consumption, growth, and survival of S. litura on native S. canadensis populations, but did not affect these traits on invasive S. canadensis populations; warming increased the number of C. marmorata on native S. canadensis populations via direct facilitation, but decreased that on invasive S. canadensis populations via indirect suppression. Third, N addition enhanced the survival of S. litura on native S. canadensis populations, and its feeding preference and leaf consumption on invasive S. canadensis populations. Finally, warming plus N addition exhibited non-additive effects on insect-plant interactions. Based on these results, we tentatively conclude that climate warming could have contrasting effects on insect-plant interactions depending on host-plant provenance and that the effects of atmospheric N deposition on insects might be relatively weak compared to climate warming. Future studies should focus on the molecular mechanisms underlying these different patterns.


Subject(s)
Introduced Species , Solidago , Animals , Spodoptera , Mastication , Insecta , Plants
10.
Gut Microbes ; 16(1): 2327377, 2024.
Article in English | MEDLINE | ID: mdl-38466137

ABSTRACT

Although metals are essential for life, they are toxic to bacteria in excessive amounts. Therefore, the maintenance of metal homeostasis is critical for bacterial physiology and pathogenesis. Vibrio parahaemolyticus is a significant food-borne pathogen that mainly causes acute gastroenteritis in humans and acute hepatopancreatic necrosis disease in shrimp. Herein, we report that ZntA functions as a zinc (Zn) and cadmium (Cd) homeostasis mechanism and contributes to oxidative stress resistance and virulence in V. parahaemolyticus. zntA is remarkably induced by Zn, copper, cobalt, nickel (Ni), and Cd, while ZntA promotes V. parahaemolyticus growth under excess Zn/Ni and Cd conditions via maintaining Zn and Cd homeostasis, respectively. The growth of ΔzntA was inhibited under iron (Fe)-restricted conditions, and the inhibition was associated with Zn homeostasis disturbance. Ferrous iron supplementation improved the growth of ΔzntA under excess Zn, Ni or Cd conditions. The resistance of ΔzntA to H2O2-induced oxidative stress also decreased, and its virulence was attenuated in zebrafish models. Quantitative real-time PCR, mutagenesis, and ß-galactosidase activity assays revealed that ZntR positively regulates zntA expression by binding to its promoter. Collectively, the ZntR-regulated ZntA is crucial for Zn and Cd homeostasis and contributes to oxidative stress resistance and virulence in V. parahaemolyticus.


Subject(s)
Gastrointestinal Microbiome , Vibrio parahaemolyticus , Humans , Animals , Zinc , Cadmium/toxicity , Vibrio parahaemolyticus/genetics , Virulence , Hydrogen Peroxide , Zebrafish , Homeostasis , Oxidative Stress , Iron
11.
Front Psychiatry ; 15: 1334240, 2024.
Article in English | MEDLINE | ID: mdl-38510804

ABSTRACT

Background: University students are anxiety prone. Due to their changing their social roles, the proportion of university students with anxiety is relatively high. In this study, using the simple random sampling, we surveyed 53 university students, including sophomores, juniors, and seniors. Aims: This paper examines the relationship between art creation and anxiety. Methods: This study uses the Self-Assessment Anxiety Scale (SAS). The test form measures the presence and extent of their anxiety problems through a series of questions. We tested the effects of an art creation process on SAS scores and suggest best practices for course settings and teaching methods for art-related subjects. Results: Art therapy intervention reduced anxiety. The most effective technique was found to be slapping the clay board during the creation process. Other actions relieved anxiety as well. Results suggest that the art creation process is an application of art therapy effective in relieving anxiety in university students. Conclusion: Key actions in the process of creating art are closely related to the treatment approaches used in art therapy interventions. This has the potential to not only improve mental health, but also to promote the health and well-being of students. Implications for future research: Rapid societal changes increasing competition for employment creates work and life pressures. University students face challenges with learning, peer competition, and employment, often resulting in anxiety. A diversified curriculum can alleviate anxiety through proper curricular planning and design. Based on this, the university's arts courses should be able to study how to improve and optimize the existing teaching and learning outcomes and can be integrated with the university's general education curriculum planning. Through appropriate teaching content and learning methods, the courses of university general education can play a role in reducing students' anxiety and promote physical and mental health, thus contributing to sustainable development of the society.

12.
Neuroreport ; 35(7): 457-465, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38526920

ABSTRACT

Modern medicine has unveiled that essential oil made from Aquilaria possesses sedative and hypnotic effects. Among the chemical components in Aquilaria, nerolidol, a natural sesquiterpene alcohol, has shown promising effects. This study aimed to unravel the potential of nerolidol in treating depression. Chronic unpredictable mild stress (CUMS) was utilized to induce depression-like behavior in mice, and open field test, sucrose preference, and tail suspension test was conducted. The impacts of nerolidol on the inflammatory response, microglial activation, and DNA methyltransferase 1 (DNMT1) were assessed. To study the regulatory role of DNMT1, lipopolysaccharide (LPS) was used to treat BV2 cells, followed by the evaluation of cell viability and DNMT1 level. Additionally, the influence of DNMT1 overexpression on BV2 cell activation was determined. Behavioral analysis revealed that nerolidol reduced depression-like behavior in mice. Nerolidol reduced the levels of inflammatory factors and microglial activation caused by CUMS. Nerolidol treatment was found to reduce DNMT1 levels in mouse brain tissue and it also decrease the LPS-induced increase in DNMT1 levels in BV2 cells. DNMT1 overexpression reversed the impacts of nerolidol on the inflammation response and cell activation. This study underscores the potential of nerolidol in reducing CUMS-induced depressive-like behavior and inhibiting microglial activation by downregulating DNMT1. These findings offer valuable insights into the potential of nerolidol as a therapeutic option for depression.


Subject(s)
Depression , Sesquiterpenes , Animals , Mice , Behavior, Animal , Depression/drug therapy , Depression/etiology , Disease Models, Animal , Hippocampus , Lipopolysaccharides , Methyltransferases/metabolism , Microglia , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Stress, Psychological/complications
13.
Bioeng Transl Med ; 9(1): e10609, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38193123

ABSTRACT

Extracellular vesicles (EVs) exist throughout our bodies. We recently revealed the important role of intracardiac EVs induced by myocardial ischemia/reperfusion on cardiac injury and dysfunction. However, the role of EVs isolated from normal tissues remains unclear. Here we found that EVs, derived from murine heart, lung, liver and kidney have similar effects on macrophages and regulate the inflammation, chemotaxis, and phagocytosis of macrophages. Interestingly, EV-treated macrophages showed LPS resistance with reduced expressions of inflammatory cytokines and enhanced phagocytic activity. Furthermore, we demonstrated that the protein content in EVs contributed to the activation of inflammation, while the RNA component mainly limited the excessive inflammatory response of macrophages to LPS. The enrichment of miRNAs, including miR-148a-3p, miR-1a-3p and miR-143-3p was confirmed in tissue EVs. These EV-enriched miRNAs contributed to the inflammation remission in LPS induced macrophages through multiple pathways, including STAT3, P65 and SAPK/JNK. Moreover, administration of both EVs and EV-educated macrophages attenuated septic injury and cytokine storm in murine CLP models. Taken together, the present study disclosed that EVs from normal tissues can orchestrate the homeostasis of macrophages and attenuate inflammatory injury of sepsis. Therefore, tissue derived EVs or their derivatives may serve as potential therapeutic strategies in inflammatory diseases.

14.
Biomaterials ; 305: 122456, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38184961

ABSTRACT

Combination therapy based on sonodynamic therapy (SDT) combined with immune checkpoint blockers anti-PD-L1 provides effective anti-tumor effects. We designed a combination therapy based on M1/PLGA@IR780/CAT NPs of SDT-enhanced immunity combined with immune checkpoint blockers against PD-L1, which was based on M1 macrophage membrane-encapsulated poly (lactic-co-glycolic acid) (PLGA) nanoparticles loaded with the acoustic sensitizer IR780 and catalase (CAT) to successfully realize it. SDT based on M1/PLGA@IR780/CAT NPs could induce tumor cell death by promoting dendritic cell (DC) maturation and modulating the tumor immune microenvironment. In particular, the systemic anti-tumor immune response and potent immune memory induced upon combination with anti-PD-L1 checkpoint blockade not only alleviated the progression of mammary cancer in 4T1 mice and effectively blocked distant metastasis, but also prevented tumor recurrence, providing a promising new therapeutic strategy for clinical tumor therapy.


Subject(s)
Immune Checkpoint Inhibitors , Nanoparticles , Animals , Mice , Biomimetics , Neoplasm Recurrence, Local , Immunotherapy , Macrophages , Cell Line, Tumor , Tumor Microenvironment
15.
Eur J Pharmacol ; 966: 176333, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38278466

ABSTRACT

The µ-opioid receptor-biased agonist theory holds that Gio protein signaling mediates the analgesic effect of opioids and the related side effects via the ß-arrestin2 signaling pathway. A series of µ-opioid-biased agonists have been developed in accordance with this theory, and the FDA has approved TRV130 (as a representative of biased agonists) for marketing. However, several reports have raised the issue of opioid side effects associated with the use of agonists. In this study, five permeable peptides were designed to emulate 11 S/T phosphorylation sites at the µ-opioid receptor (MOR) carboxyl-terminal. In vitro experiments were performed to detect the activation level of G proteins from the cAMP inhibition assay and the ß-arrestin2 recruitment by the BRET assay. Designed peptides might effectively interfere with the activation of the Gio and ß-arrestin2 pathways when combined with morphine. The resulting morphine-induced tolerance, respiratory inhibition, and constipation in mice showed that the ß-arrestin2 pathway was responsible for morphine tolerance while the Gio signaling pathway was involved with respiratory depression and constipation and that these side effects were significantly related to phosphorylation sites S363 and T370. This study may provide new directions for the development of safer and more effective opioid analgesics, and the designed peptides may be an effective tool for exploring the mechanism by which µ-opioid receptors function, with the potential of reducing the side effects that are associated with clinical opioid treatment.


Subject(s)
Analgesics, Opioid , Morphine , Mice , Animals , Morphine/adverse effects , Analgesics, Opioid/adverse effects , Analgesics, Opioid/metabolism , Receptors, Opioid, mu/metabolism , Signal Transduction , Constipation/chemically induced , Peptides/metabolism , beta-Arrestin 2/metabolism
16.
Thorac Cancer ; 15(2): 142-151, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37986711

ABSTRACT

BACKGROUND: Using the published survival statistics from cancer registration or population-based studies, we aimed to describe the global pattern and trend of lung cancer survival. METHODS: By searching SinoMed, PubMed, Web of Science, EMBASE, and SEER, all survival analyses from cancer registration or population-based studies of lung cancer were collected by the end of November 2022. The survival rates were extracted by sex, period, and country. The observed, relative, and net survival rates of lung cancer were applied to describe the pattern and time changes from the late 1990s to the early 21st century. RESULTS: Age-standardized 5-year relative/net survival rate of lung cancer was typically low, with 10%-20% for most regions. The highest age-standardized relative/net survival rate was observed in Japan (32.9%, 2010-2014), and the lowest was in India (3.7%, 2010-2014). In most countries, the five-year age-standardized relative/net survival rates of lung cancer were higher in females and younger people. The patients with adenocarcinoma had a better prognosis than other groups. In China, the highest 5-year overall relative/net survival rates were 27.90% and 31.62% in men and women in Jiangyin (2012-2013). CONCLUSION: Over the past decades, the prognosis of lung cancer has gradually improved, but significant variations were also observed globally. Worldwide, a better prognosis of lung cancer can be observed in females and younger patients. It is essential to compare and evaluate the histological or stage-specific survival rates of lung cancer between different regions in the future.


Subject(s)
Adenocarcinoma , Lung Neoplasms , Male , Humans , Female , Lung Neoplasms/epidemiology , Survival Rate , Adenocarcinoma/pathology , Prognosis , Survival Analysis , Incidence
17.
Eur Heart J ; 45(9): 688-703, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38152853

ABSTRACT

BACKGROUND AND AIMS: Anti-hypertensive agents are one of the most frequently used drugs worldwide. However, no blood pressure-lowering strategy is superior to placebo with respect to survival in diabetic hypertensive patients. Previous findings show that Wnt co-receptors LDL receptor-related proteins 5 and 6 (LRP5/6) can directly bind to several G protein-coupled receptors (GPCRs). Because angiotensin II type 1 receptor (AT1R) is the most important GPCR in regulating hypertension, this study examines the possible mechanistic association between LRP5/6 and their binding protein Dickkopf-1 (DKK1) and activation of the AT1R and further hypothesizes that the LRP5/6-GPCR interaction may affect hypertension and potentiate cardiac impairment in the setting of diabetes. METHODS: The roles of serum DKK1 and DKK1-LRP5/6 signalling in diabetic injuries were investigated in human and diabetic mice. RESULTS: Blood pressure up-regulation positively correlated with serum DKK1 elevations in humans. Notably, LRP5/6 physically and functionally interacted with AT1R. The loss of membrane LRP5/6 caused by injection of a recombinant DKK1 protein or conditional LRP5/6 deletions resulted in AT1R activation and hypertension, as well as ß-arrestin1 activation and cardiac impairment, possibly because of multiple GPCR alterations. Importantly, unlike commonly used anti-hypertensive agents, administration of the anti-DKK1 neutralizing antibody effectively prevented diabetic cardiac impairment in mice. CONCLUSIONS: These findings establish a novel DKK1-LRP5/6-GPCR pathway in inducing diabetic injuries and may resolve the long-standing conundrum as to why elevated blood DKK1 has deleterious effects. Thus, monitoring and therapeutic elimination of blood DKK1 may be a promising strategy to attenuate diabetic injuries.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Hypertension , Receptors, LDL , Animals , Humans , Mice , Antihypertensive Agents , Diabetic Cardiomyopathies/prevention & control , Hypertension/prevention & control , Receptors, LDL/antagonists & inhibitors
19.
Animal Model Exp Med ; 7(3): 324-336, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38155461

ABSTRACT

BACKGROUND: Bitter taste receptors (Tas2rs) are generally considered to sense various bitter compounds to escape the intake of toxic substances. Bitter taste receptors have been found to widely express in extraoral tissues and have important physiological functions outside the gustatory system in vivo. METHODS: To investigate the physiological functions of the bitter taste receptor cluster Tas2r106/Tas2r104/Tas2r105/Tas2r114 in lingual and extraoral tissues, multiple Tas2rs mutant mice and Gnat3 were produced using CRISPR/Cas9 gene-editing technique. A mixture containing Cas9 and sgRNA mRNAs for Tas2rs and Gnat3 gene was microinjected into the cytoplasm of the zygotes. Then, T7EN1 assays and sequencing were used to screen genetic mutation at the target sites in founder mice. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunostaining were used to study the expression level of taste signaling cascade and bitter taste receptor in taste buds. Perception to taste substance was also studied using two-bottle preference tests. RESULTS: We successfully produced several Tas2rs and Gnat3 mutant mice using the CRISPR/Cas9 technique. Immunostaining results showed that the expression of GNAT3 and PLCB2 was not altered in Tas2rs mutant mice. But qRT-PCR results revealed the changed expression profile of mTas2rs gene in taste buds of these mutant mice. With two-bottle preference tests, these mutant mice eliminate responses to cycloheximide due to genetic mutation of Tas2r105. In addition, these mutant mice showed a loss of taste perception to quinine dihydrochloride, denatonium benzoate, and cucurbitacin B (CuB). Gnat3-mediated taste receptor and its signal pathway contribute to CuB perception. CONCLUSIONS: These findings implied that these mutant mice would be a valuable means to understand the biological functions of TAS2Rs in extraoral tissues and investigate bitter compound-induced responses mediated by these TAS2Rs in many extraoral tissues.


Subject(s)
Mutation , Receptors, G-Protein-Coupled , Taste Perception , Animals , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Taste Perception/genetics , Taste Perception/drug effects , Mice , Quaternary Ammonium Compounds/pharmacology , Taste Buds/drug effects , Taste Buds/metabolism , CRISPR-Cas Systems , Taste/drug effects , Taste/genetics , Transducin/genetics , Transducin/metabolism , Gene Editing , Triterpenes , Heterotrimeric GTP-Binding Proteins , Phospholipase C beta
20.
Infect Drug Resist ; 16: 7455-7464, 2023.
Article in English | MEDLINE | ID: mdl-38089959

ABSTRACT

Background: The COVID-19 pandemic presents challenges for healthcare systems globally, especially in vulnerable populations such as pediatric hematopoietic stem cell transplant (HSCT) recipients. This study examines the clinical characteristics and outcomes of COVID-19 infection in pediatric HSCT recipients within one year post-HSCT. Methods: Retrospective analysis was conducted on data from 247 pediatric patients. None of them had received SARS-CoV-2 vaccination or had prior infection. SARS-CoV-2 infection was confirmed using RT-PCR testing. COVID-19 disease severity was categorized according to established guidelines. Demographic, clinical, laboratory, imaging and treatment data were collected. Results: The median age of the cohort was 7±3.7 years, with thalassemia major as the predominant underlying disease. Allogeneic HSCT was performed in the majority of cases, with haploidentical donors being the most common source of grafts. Nearly half of the patients developed COVID-19, with significantly higher infection rates observed in recipients over 100 days compared to recipients within 100 days post-HSCT (40.1% vs 21.7%, p<0.05, Fisher's Exact test). Fever (n=107, 43.2%) and cough (n=88, 35.6%) were the most common symptoms. While most patients had mild disease and did not require specific anti-viral treatment, a significant proportion required hospitalization (n=34, 13.8%). Various treatments were employed hospitalized patients, including Paxlovid (n=19, 55.9%), methylprednisolone (n=7, 20.6%), IL-6 antibody (n=2, 5.9%), mesenchymal stem cells (n=3, 8.8%), and exosomes nebulization therapy (n=2, 5.9%). Despite multidisciplinary approaches, one patient died from severe respiratory failure. However, overall survival of all patients remained high (99.53%; CI 96.72-99.93%), indicating favorable outcomes in pediatric HSCT recipients with COVID-19. Conclusion: This study provides insights into clinical features, therapeutic measures, and outcomes of pediatric HSCT recipients following COVID-19 infection in a large HSCT center in China. These findings contribute to our understanding of COVID-19 in this population and inform strategies to mitigate the impact the pandemic's impact on their care.

SELECTION OF CITATIONS
SEARCH DETAIL
...