Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Int J Biol Macromol ; 269(Pt 2): 132102, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729465

ABSTRACT

Optically pure 1,2,3,4-tetrahydroquinolines (THQs) represent a class of important motifs in many natural products and pharmaceutical agents. While recent advances on redox biocatalysis have demonstrated the great potential of amine oxidases, all the transformations focused on 2-substituted THQs. The corresponding biocatalytic method for the preparation of chiral 4-substituted THQs is still challenging due to the poor activity and stereoselectivity of the available enzyme. Herein, we developed a biocatalytic kinetic resolution approach for enantiodivergent synthesis of 4-phenyl- or alkyl-substituted THQs. Through structure-guided protein engineering of cyclohexylamine oxidase derived from Brevibacterium oxidans IH-35 A (CHAO), the variant of CHAO (Y215H/Y214S) displayed improved specific activity toward model substrate 4-phenyl substituted THQ (0.14 U/mg, 13-fold higher than wild-type CHAO) with superior (R)-stereoselectivity (E > 200). Molecular dynamics simulations show that CHAO Y215H/Y214S allows a suitable substrate positioning in the expanded binding pocket to be facilely accessed, enabling enhanced activity and stereoselectivity. Furthermore, a series of 4-alkyl-substituted THQs can be transformed by CHAO Y215H/Y214S, affording R-isomers with good yields (up to 50 %) and excellent enantioselectivity (up to ee > 99 %). Interestingly, the monoamine oxidase from Pseudomonas fluorescens Pf0-1 (PfMAO1) with opposite enantioselectivity was also mined. Together, this system enriches the kinetic resolution methods for the synthesis of chiral THQs.

2.
Curr Mol Pharmacol ; 17: e18761429274883, 2024.
Article in English | MEDLINE | ID: mdl-38389417

ABSTRACT

Guanine nucleotide exchange factor H1 (GEF-H1) is a unique protein modulated by the GDP/GTP exchange. As a regulator of the Rho-GTPase family, GEF-H1 can be activated through a microtubule-depended mechanism and phosphorylation regulation, enabling it to perform various pivotal biological functions across multiple cellular activities. These include the regulation of Rho-GTPase, cytoskeleton formation, cellular barrier, cell cycle, mitosis, cell differentiation, and vesicle trafficking. Recent studies have revealed its crucial effect on the tumor microenvironment (TME) components, promoting tumor initiation and progress. Consequently, an in-depth exploration of GEF-H1's biological roles and association with tumors holds promise for its potential as a valuable molecular target in tumor treatment.


Subject(s)
Neoplasms , rhoA GTP-Binding Protein , Humans , Rho Guanine Nucleotide Exchange Factors/metabolism , rhoA GTP-Binding Protein/metabolism , Microtubules/metabolism , Proteins , Neoplasms/metabolism , Tumor Microenvironment
3.
Transl Cancer Res ; 12(4): 904-912, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37180651

ABSTRACT

Background: Anti-angiogenesis therapy has been a vital treatment option in a variety of cancers. Assessing the efficacy and safety of apatinib in patients with heavily pretreated end-stage cancer is essential. Methods: Thirty patients with end-stage cancer who were heavily pretreated were enrolled in this study. All patients received oral administration of apatinib (125-500 mg/d) between May 2015 and November 2016. Dose reduction or elevation was conducted based on adverse events and doctors' judgments. Results: Prior to the apatinib treatment, the enrolled patients received a median of 1.2 surgeries (range, 0-7), 1.6 sessions of radiotherapies (range, 0-6), and 10.2 cycles of chemotherapy (range, 0-60); 43.3% of patients had uncontrolled local lesions, 83.3% of patients had uncontrolled multiple metastases, and 30.0% of patients had both. After the treatment, 25 patients had valuable data, 6 (24.0%) patients achieved partial response (PR), and 12 (48.0%) patients had stable disease (SD). The disease control rate (DCR) was 72.0%. The PR and SD rates were 20.0% and 40.0%, respectively, and the DCR was 60.0% in the intent-to-treat (ITT) analysis. Meanwhile, the median progression-free survival (PFS) was 2.6 (range, 0.7-5.4) months, and the median overall survival (OS) was 3.8 (range, 1.0-12.0) months. Furthermore, the PR rate and DCR in patients with squamous cell cancer (SCC) were 45.5% and 81.8%, respectively; those in patients with adenocarcinoma (ADC) were 8.3% and 58.3%, respectively. The adverse events were generally mild. The most common adverse events were hyperbilirubinemia (53.3%), elevated transaminase (36.7%), anemia (30.0%), thrombocytopenia (30.0%), hematuria (30.0%), fatigue (26.7%), and leukopenia (20.0%). Conclusions: The results of this study demonstrate the efficacy and safety of apatinib and support the further development of apatinib as a potential treatment option for patients with heavily pretreated end-stage cancer.

4.
Cancer Sci ; 114(5): 1943-1957, 2023 May.
Article in English | MEDLINE | ID: mdl-36642785

ABSTRACT

Radioresistance remains a major obstacle to efficacious radiotherapy in non-small-cell lung cancer (NSCLC). DNA replication proteins are novel targets for radiosensitizers. POLQ is a DNA polymerase involved in DNA damage response and repair. We found that POLQ is overexpressed in NSCLC and is clinically correlated with high tumor stage, poor prognosis, increased tumor mutational burden, and ALK and TP5 mutation status; POLQ inhibition impaired lung tumorigenesis. Notably, POLQ expression was higher in radioresistant lung cancer cells than in wild-type cancer cells. Moreover, POLQ expression was further increased in radioresistant cells after radiation. Enhanced radioresistance is through a prolonged G2/M phase and faster repair of DNA damage, leading to reduced radiation-induced apoptosis. Novobiocin (NVB), a POLQ inhibitor, specifically targeted cancer cells. Genetic knockdown of POLQ or pharmacological inhibition by NVB decreased radioresistance in lung adenocarcinoma while causing little toxicity to normal pulmonary epithelial cells. In conclusion, POLQ is a promising and practical cancer-specific target to impair tumorigenesis and enhance radiosensitivity in NSCLC.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , DNA Repair/genetics , Cell Line, Tumor , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/radiotherapy , Radiation Tolerance/genetics , Carcinogenesis/genetics
5.
Respir Res ; 24(1): 25, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36694200

ABSTRACT

BACKGROUND: Radiation-induced lung injury (RILI) is the most common and serious complication of chest radiotherapy. However, reported radioprotective agents usually lead to radiation resistance in tumor cells. The key to solving this problem is to distinguish between the response of tumor cells and normal lung epithelial cells to radiation damage. METHODS: RNA-Seq was used to recognize potential target of alleviating the progression of RILI as well as inhibiting tumor growth. The activation of NLRP3 inflammasome in lung epithelial cells was screened by qRT-PCR, western blotting, immunofluorescence, and ELISA. An in vivo model of RILI and in vitro conditioned culture model were constructed to evaluate the effect of NLRP3/interleukin-1ß on fibroblasts activation. ROS, ATP, and (NADP)+/NADP(H) level in lung epithelial cells was detected to explore the mechanism of NLRP3 inflammasome activation. The lung macrophages of the mice were deleted to evaluate the role of lung epithelial cells in RILI. Moreover, primary cells were extracted to validate the results obtained from cell lines. RESULTS: NLRP3 activation in epithelial cells after radiation depends on glycolysis-related reactive oxygen species accumulation. DPYSL4 is activated and acts as a negative regulator of this process. The NLRP3 inflammasome triggers interleukin-1ß secretion, which directly affects fibroblast activation, proliferation, and migration, eventually leading to lung fibrosis. CONCLUSIONS: Our study suggests that NLRP3 inflammasome activation in lung epithelial cells is essential for radiation-induced lung injury. These data strongly indicate that targeting NLRP3 may be effective in reducing radiation-induced lung injury in clinical settings.


Subject(s)
Inflammasomes , Lung Injury , Radiation Injuries, Experimental , Animals , Mice , Epithelial Cells/metabolism , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lung/metabolism , Lung Injury/etiology , Lung Injury/genetics , Lung Injury/metabolism , NADP/metabolism , NADP/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Radiation Injuries, Experimental/complications , Radiation Injuries, Experimental/genetics , Radiation Injuries, Experimental/metabolism
6.
Int J Radiat Oncol Biol Phys ; 115(5): 1244-1256, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36423742

ABSTRACT

PURPOSE: Tumor radiation resistance is the main obstacle to effective radiation therapy for patients with hepatocellular carcinoma (HCC). We identified the role of urea cycle key enzyme carbamoyl phosphate synthetase 1 (CPS1) in radioresistance of HCC and explored its mechanism, aiming to provide a novel radiosensitization strategy for the CPS1-deficiency HCC subtype. METHODS AND MATERIALS: The expression of CPS1 was measured by western blot and immunohistochemistry. Cell growth assay, EdU assay, cell apoptosis assay, cell cycle assay, clone formation assay, and subcutaneous tumor assay were performed to explore the relationship between CPS1 and radioresistance of HCC cells. Lipid metabonomic analysis was used for investigating the effects of CPS1 on lipid synthesis of HCC cells. RNA sequencing and coimmunoprecipitation assay were carried out to reveal the mechanism of CPS1 participating in the regulation of HCC radiation therapy resistance. Furthermore, 10074-G5, the specific inhibitor of c-Myc, was administered to HCC cells to investigate the role of c-Myc in CPS1-deficiency HCC cells. RESULTS: We found that urea cycle key enzyme CPS1 was frequently lower in human HCC samples and positively associated with the patient's prognosis. Functionally, the present study proved that CPS1 depletion could accelerate the development of HCC and induce radiation resistance of HCC in vitro and in vivo, and deficiency of CPS1 promoted the synthesis of some lipid molecules. Regarding the mechanism, we uncovered that inhibition of CPS1 upregulated CyclinA2 and CyclinD1 by stabilizing oncoprotein c-Myc at the posttranscriptional level and generated radioresistance of HCC cells. Moreover, inactivation of c-Myc using 10074-G5, a specific c-Myc inhibitor, could partially attenuate the proliferation and radioresistance induced by depletion of CPS1. CONCLUSIONS: Our results recapitulated that silencing CPS1 could promote HCC progression and radioresistance via c-Myc stability mediated by the ubiquitin-proteasome system, suggesting that targeting c-Myc in CPS1-deficiency HCC subtype may be a valuable radiosensitization strategy in the treatment of HCC.


Subject(s)
Carbamoyl-Phosphate Synthase I Deficiency Disease , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/radiotherapy , Carcinoma, Hepatocellular/metabolism , Carbamyl Phosphate , Liver Neoplasms/radiotherapy , Liver Neoplasms/metabolism , Carbamoyl-Phosphate Synthase (Ammonia)/chemistry , Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Carbamoyl-Phosphate Synthase I Deficiency Disease/genetics , Carbamoyl-Phosphate Synthase I Deficiency Disease/metabolism , Carbamoyl-Phosphate Synthase I Deficiency Disease/pathology , Urea , Lipids , Cell Line, Tumor
7.
J Thorac Dis ; 15(12): 6858-6867, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38249881

ABSTRACT

Background: Awake prone positioning (APP) is broadly implemented in patients with severe acute respiratory syndrome coronavirus 2 related disease [coronavirus disease 2019 (COVID-19)] admitted to hospital with severe respiratory distress syndrome. This prospective observational study aimed to explore the factors influencing the implementation of APP in patients with acute respiratory failure due to COVID-19. Methods: Patients with COVID-19, all hospitalized with positive X-ray findings and oxygen supplementation requirement, in the Respiratory Step-Down Unit of the Peking University Third Hospital between January 6th, 2023, and January 20th, 2023, were included in this study. Data regarding basic information, activities of daily living (ADLs) scores, oxygen therapy, vital signs, and duration of APP were collected to investigate the factors influencing prone positioning. Results: Among the 134 patients included, 55.2% showed an improvement in oxygen saturation 1 hour after APP. Logistic regression revealed that the pre-APP heart rate (HR) [odds ratio (OR) =1.032; P=0.046] and peripheral oxygen saturation (SpO2) (OR =0.720; P<0.001) were the associated factors of the improvement in SpO2 after treatment. Multiple linear regression revealed that the ADL scores and pre-APP respiratory rate (RR) were the associated factors of the duration of prone positioning (P<0.01). The APP technical steering group effectively improved duration of APP. Conclusions: Patients with low SpO2 and increased HR before treatment showed greater improvement in oxygen saturation. Patients with lower tolerance to ADL but lower RRs were those to demonstrate a longer duration of prone positioning. This is pointing towards establishing the most favorable time window for APP during the course of COVID-19: after the ADLs have already decreased, but before significant tachypnea has appeared.

8.
Front Plant Sci ; 13: 1018616, 2022.
Article in English | MEDLINE | ID: mdl-36325552

ABSTRACT

Rice blast caused by Magnaporthe oryzae is one of the most important diseases of rice. Elicitors secreted by M. oryzae play important roles in the interaction with rice to facilitate fungal infection and disease development. In recent years, several elicitor proteins have been identified in M. oryzae, and their functions and importance are increasingly appreciated. In this study, we purified a novel elicitor-activity protein from M. oryzae, which was further identified as a vanadium chloroperoxidase (MoVcpo) by MAIDL TOF/TOF MS. The purified MoVcpo induced reactive oxygen species (ROS) accumulation in host cells, up-regulated the expression of multiple defense-related genes, thus significantly enhancing rice resistance against M. oryzae. These results suggested that MoVcpo functions as a pathogen-associated molecular pattern (PAMP) to trigger rice immunity. Furthermore, MoVcpo was highly expressed in the early stage of M. oryzae infection. Deletion of MoVcpo affected spore formation, conidia germination, cell wall integrity, and sensitivity to osmotic stress, but not fungal growth. Interestingly, compared with the wild-type, inoculation with MoVcpo deletion mutant on rice led to markedly induced ROS accumulation, increased expression of defense-related genes, but also lower disease severity, suggesting that MoVcpo acts as both an elicitor activating plant immune responses and a virulence factor facilitating fungal infection. These findings reveal a novel role for vanadium chloroperoxidase in fungal pathogenesis and deepen our understanding of M. oryzae-rice interactions.

9.
Cell Death Dis ; 13(10): 891, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36270983

ABSTRACT

Metastasis remains the primary cause of small cell lung cancer (SCLC)-related deaths. Growing evidence links tumor metastasis with a pre-metastatic microenvironment characterized by an anti-inflammatory response, immunosuppression, and the presence of tumor-derived exosomes. To clarify the relationships among these factors in SCLC, we analyzed SCLC patient samples as well as a mouse model. Among the infiltrating immune cells, our study focused on the tumor-associated macrophages (TAMs), that are well-known to promote tumor progression and metastasis. We found that high expression of the alternatively activated (M2) TAM marker, CD206+ was associated clinically with a poorer prognosis and metastasis state in patients with SCLC. Moreover, infiltrating macrophages (MØ) were found in the metastatic foci of an SCLC mouse model. Additionally, we observed dominant switching to M2 phenotype, accompanied by increased NLRP6 expression. Since tumor-derived exosomes are the key links between the tumor and its immune microenvironment, we further investigated whether SCLC-derived exosomes contributed to the MØ phenotype switch. Our findings showed for the first time that SCLC-derived exosomes induce the M2 switch via the NLRP6/NF-κB pathway, and thus, promote SCLC metastasis in vitro and in vivo. Collectively, these results indicate a novel mechanism by which SCLC-derived exosomes induce immunosuppression of distant MØ to promote systemic metastasis by activating NLRP6. Here, we highlight the close relationship between the tumor-derived exosomes, inflammasomes and immune microenvironment in SCLC metastasis.


Subject(s)
Exosomes , Lung Neoplasms , Small Cell Lung Carcinoma , Animals , Mice , Anti-Inflammatory Agents/metabolism , Cell Line, Tumor , Exosomes/metabolism , Inflammasomes/metabolism , Lung Neoplasms/pathology , Macrophages/metabolism , NF-kappa B/metabolism , Small Cell Lung Carcinoma/pathology , Tumor Microenvironment
10.
Cell Death Dis ; 13(7): 636, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35864117

ABSTRACT

The efficacy of apatinib has been confirmed in the treatment of solid tumors, including non-small-cell lung cancer (NSCLC). However, the direct functional mechanisms of tumor lethality mediated by apatinib and the precise mechanisms of drug resistance are largely unknown. In this study, we demonstrated that apatinib could reprogram glutamine metabolism in human NSCLC via a mechanism involved in amino acid metabolic imbalances. Apatinib repressed the expression of GLS1, the initial and rate-limiting enzyme of glutamine catabolism. However, the broken metabolic balance led to the activation of the amino acid response (AAR) pathway, known as the GCN2/eIF2α/ATF4 pathway. Moreover, activation of ATF4 was responsible for the induction of SLC1A5 and ASNS, which promoted the consumption and metabolization of glutamine. Interestingly, the combination of apatinib and ATF4 silencing abolished glutamine metabolism in NSCLC cells. Moreover, knockdown of ATF4 enhanced the antitumor effect of apatinib both in vitro and in vivo. In summary, this study showed that apatinib could reprogram glutamine metabolism through the activation of the AAR pathway in human NSCLC cells and indicated that targeting ATF4 is a potential therapeutic strategy for relieving apatinib resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Amino Acid Transport System ASC/metabolism , Amino Acids/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Glutamine/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Minor Histocompatibility Antigens/metabolism , Pyridines
11.
World J Gastrointest Oncol ; 14(5): 1002-1013, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35646278

ABSTRACT

BACKGROUND: Previous studies have suggested that a low albumin-to-alkaline phosphatase ratio (AAPR) is associated with a lower survival rate in patients with various malignancies. However, the relationship between pretreatment AAPR and the prognosis of patients with gastric cancer (GC) remains unclear. AIM: To investigate the prognostic value of AAPR in distant metastatic GC. METHODS: A total of 191 patients with distant metastatic cancer from a single institute were enrolled in this study. Pretreatment clinical data, including serum albumin and alkaline phosphatase levels, were collected. A chi-square test or Fisher's exact test was applied to evaluate the correlations between AAPR and various clinical parameters in GC patients. The Kaplan-Meier method and Cox proportional hazards regression model were used to evaluate the prognostic efficacy of AAPR in metastatic GC patients. A two-sided P value lower than 0.05 was considered statistically significant. RESULTS: A receiver operating characteristic curve indicated that 0.48 was the optimal threshold value for AAPR. AAPR ≤ 0.48 was significantly associated with bone (P < 0.05) and liver metastasis (P < 0.05). Patients with high levels of AAPR had better survival in terms of overall survival (OS) and progression-free survival (PFS), regardless of the presence of liver/bone metastasis. Pretreatment AAPR was found to be a favorable predictor of OS and PFS based on a multivariate cox regression model. AAPR-M system, constructed based on AAPR and number of metastatic sites, showed superior predictive ability relative to the number of metastatic sites for predicting survival. CONCLUSION: Pretreatment AAPR may serve as an independent prognostic factor for predicting PFS and OS in patients with metastatic GC. Furthermore, AAPR may assist clinicians with individualizing treatment.

12.
Environ Int ; 166: 107362, 2022 08.
Article in English | MEDLINE | ID: mdl-35749991

ABSTRACT

The adverse effects of plastic on adult animal and human health have been receiving increasing attention. However, its potential toxicity to fetuses has not been fully elucidated. Herein, biodistribution of polystyrene (PS) particles was determined after the maternal mice were orally given PS micro- and/or nano-particles with and without surface modifications during gestational days 1 to 17. The results showed that PS microplastics (MPs) and nanoparticles (NPs) mainly emerged in the alimentary tract, brain, uterus, and placenta in maternal mice, and only the latter infiltrated into the fetal thalamus. PS NPs and carboxyl-modified NPs induced differentially expressed genes mainly enriched in oxidative phosphorylation and GABAergic synapse. Maternal administration of PS particles during gestation led to anxiety-like behavior of the progenies and their γ-aminobutyric acid (GABA) reduction in the prefrontal cortex and amygdala at Week 8. N-Acetylcysteine (NAC), an antioxidant, alleviated PS particles-induced oxidative injury in the fetal brain and rescued the anxiety-like behavior of the progenies. Additionally, PS nanoparticles caused excessive ROS and apoptosis in neuronal cell lines, which were prevented by glutathione supplementation. These results suggested that PS particles produced a negative effect on fetuses by inducing oxidative injury and suppressing GABA synthesis in their brain. The findings contribute to estimating the risk for PS particles to human and animal health.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Pregnancy , Female , Humans , Animals , Mice , Polystyrenes/toxicity , Polystyrenes/metabolism , Plastics/metabolism , Reactive Oxygen Species/metabolism , Tissue Distribution , Fetus/metabolism , Apoptosis , gamma-Aminobutyric Acid/metabolism , Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity
13.
Cell Death Discov ; 8(1): 36, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35075132

ABSTRACT

Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) tyrosine kinase inhibitors (TKIs) have achieved remarkable clinical progress in the treatment of non-small-cell lung cancer; however, resistance has limited their therapeutic efficacy. Therefore, understanding the mechanisms of VEGF-TKI and ICI resistance will help to develop effective treatment strategies for patients with advanced NSCLC. Our results suggested that treatment with VEGFR2-TKIs upregulated ADRB2 expression in NSCLC cells. Propranolol, a common ADRB2 antagonist, significantly enhanced the therapeutic effect of VEGFR2-TKIs by inhibiting the ADRB2 signaling pathway in NSCLC cells in vitro and in vivo. Mechanically, the treatment-induced ADRB2 upregulation and the enhancement of ADRB2/VEGFR2 interaction caused resistance to VEGFR2-TKIs in NSCLC. And the inhibition of the ADRB2/CREB/PSAT1 signaling pathway sensitized cells to VEGFR2-TKIs. We demonstrated that ADRB2 signaling is crucial in mediating resistance to VEGFR2-TKIs and provided a novel promising combinatory approach to enhance the antitumor effect of VEGFR2-TKIs in NSCLC combining with propranolol.

16.
Cell Death Dis ; 11(9): 766, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943607

ABSTRACT

Anlotinib (AL3818), a novel multi-targeted receptor tyrosine kinase inhibitor, has recently been proven to be an antitumour drug. This study aimed to explore the antitumour effect of anlotinib and its underlying molecular mechanisms in human pancreatic cancer (PC) cells. The anti-proliferative effect of anlotinib for three PC cell lines was validated using CCK-8, colony formation and EdU detection assays. Cell cycle, cell apoptosis, and reactive oxygen species (ROS) detection assays, a PC xenograft model and immunohistochemistry were performed to elucidate the mechanisms by which anlotinib induced tumour lethality in vitro and in vivo. These results demonstrated that anlotinib inhibited proliferation, induced G2/M phase arrest and triggered apoptosis in PC cell lines. Anlotinib induced PC's apoptosis through the accumulation of ROS which activated the endoplasmic reticulum (ER) stress via PERK/p-eIF2α/ATF4 pathway. Furthermore, we demonstrated that the expression level of Nrf2, an antioxidant protein, increased with anlotinib treatment. Nrf2 knockdown enhanced the pro-apoptotic effect of anlotinib and the expression of the PERK/p-eIF2α/ATF4 pathway. The in vivo results suggested that suppressing Nrf2 improved the antitumour effect of anlotinib on PC cells. These data indicated that the apoptotic effect of anlotinib on PC cells was induced by ER stress via the accumulation of ROS. In the future, anlotinib combined with an Nrf2 inhibitor may provide a new therapeutic strategy for the treatment of human PC.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Indoles/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Quinolines/pharmacology , Reactive Oxygen Species , Animals , Antioxidants/pharmacology , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cell Survival , Endoplasmic Reticulum/metabolism , Female , Gene Expression Profiling , Humans , Inhibitory Concentration 50 , Mice , Mice, Nude , Neoplasm Transplantation , Treatment Outcome
17.
Mol Med Rep ; 22(4): 3387-3395, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32945402

ABSTRACT

Metformin, a cost­effective and safe orally administered antidiabetic drug used by millions of patients, has exhibited great interest for its potential osteogenic­promoting properties in different types of cells, including mesenchymal stem cells (MSCs). Diabetic osteopathy is a common comorbidity of diabetes mellitus; however, the underlying molecular mechanisms of metformin on the physiological processes of MSCs, under high glucose condition, remain unknown. To determine the effects of metformin on the regulatory roles of proliferation and differentiation in MSCs, under high glucose conditions, osteogenesis after metformin treatment was detected with Alizarin Red S and ALP staining. The results demonstrated that high glucose levels significantly inhibited cell proliferation and osteogenic differentiation under high glucose conditions. Notably, addition of metformin reversed the inhibitory effects induced by high glucose levels on cell proliferation and osteogenesis. Furthermore, high glucose levels significantly decreased mitochondrial membrane potential (MMP), whereas treatment with metformin helped maintain MMP. Further analysis of mitochondrial function revealed that metformin significantly promoted ATP synthesis, mitochondrial DNA mass and mitochondrial transcriptional activity, which were inhibited by high glucose culture. Furthermore, metformin significantly scavenged reactive oxygen species (ROS) induced by high glucose levels, and regulated the ROS­AKT­mTOR axis inhibited by high glucose levels, suggesting the protective effects of metformin against high glucose levels via regulation of the ROS­AKT­mTOR axis. Taken together, the results of the present study demonstrated the protective role of metformin on the physiological processes of MSCs, under high glucose condition and highlighted the potential molecular mechanism underlying the effect of metformin in promoting cell proliferation and osteogenesis under high glucose condition.


Subject(s)
Glucose/adverse effects , Hypoglycemic Agents/pharmacology , Mesenchymal Stem Cells/cytology , Metformin/pharmacology , Osteogenesis/drug effects , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Female , Membrane Potential, Mitochondrial/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism
18.
J Hematol Oncol ; 13(1): 99, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32690037

ABSTRACT

BACKGROUND: The cyclin-dependent kinase 7 (CDK7) subunit of TFIIH regulates RNA polymerase-II-based transcription and promotes tumor progression. However, the mechanisms involved in CDK7-mediated immune evasion are unclear in non-small cell lung cancer (NSCLC). METHODS: RNA silencing and pharmacologic inhibitors were used to evaluate the functions of CDK7/p38α/MYC/PD-L1 axis in cancer cell proliferation and antiPD-1 therapy resistance. Flow cytometry was performed to detect the status of the immune microenvironment after CDK7 inhibition and antiPD-1 therapy in vivo. CD8 depletion antibodies were used to assess the role of CD8+ T cells in combined CDK7 and PD-1 blockade. The associations among CDK7, p38α, MYC, PD-L1, infiltrating T cells, and survival outcomes were validated in two tissue microarrays and public transcriptomic data of NSCLC. RESULTS: High CDK7 mRNA and protein levels were identified to be associated with poor prognosis in NSCLC. CDK7 silencing and CDK7 inhibitor THZ1 elicited apoptosis and suppressed tumor growth. Moreover, CDK7 ablation specifically suppressed p38α/MYC-associated genes, and THZ1 inhibited MYC transcriptional activity through downregulating p38α. CDK7 inhibition sensitized NSCLC to p38α inhibitor. Further, THZ1 suppressed PD-L1 expression by inhibiting MYC activity. THZ1 boosted antitumor immunity by recruiting infiltrating CD8+ T cells and synergized with antiPD-1 therapy. The CDK7/MYC/PD-L1 signature and infiltrating T cell status collectively stratified NSCLC patients into different risk groups. CONCLUSION: These data suggest that the combined CDK7 inhibitor THZ1 and antiPD-1 therapy can be an effective treatment in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Cyclin-Dependent Kinases/antagonists & inhibitors , Imidazoles/pharmacology , Lung Neoplasms/drug therapy , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Phenylenediamines/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Pyridines/pharmacology , Pyrimidines/therapeutic use , Signal Transduction/drug effects , Animals , B7-H1 Antigen/biosynthesis , B7-H1 Antigen/genetics , B7-H1 Antigen/physiology , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Cyclin-Dependent Kinases/biosynthesis , Cyclin-Dependent Kinases/genetics , Drug Resistance, Neoplasm , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/physiology , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Phenylenediamines/administration & dosage , Phenylenediamines/pharmacology , Prognosis , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/physiology , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , RNA Interference , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , Tissue Array Analysis , Transcriptome , Xenograft Model Antitumor Assays , Cyclin-Dependent Kinase-Activating Kinase
19.
Respir Res ; 20(1): 248, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31699089

ABSTRACT

BACKGROUND: Small cell lung cancer (SCLC) is a highly aggressive lung cancer subtype with poor survival and limited treatment options. Sequencing results have revealed gene mutations associated with SCLC, however, the correlation between the genomic alterations and clinical prognosis of SCLC is yet unclear. METHODS: Targeted next-generation sequencing of 62 cancer related genes was performed on 53 SCLC samples. The correlations between clinical outcomes and genomic alterations were analyzed. RESULTS: 38/62 (61.3%) candidate genes harbored some alterations, while all the SCLC samples carried at least 3 gene mutations. The most common nonsynonymous mutations included ERBB2 (95.9%), CREBBP (95.9%), and TP53 (77.6%). The median nonsynonymous tumor mutation burden (TMB) was 21.7 mutations/Mb (rang, 9.3-55.9). High TMB (> 21 mutations/Mb) was good prognostic factor in overall survival (OS) (21.7 vs. 10.4 months, P = 0.012). Multivariate analysis showed that high TMB was an independent prognostic factor. The overall survival (OS) of patients carrying KIAA1211 mutation was significantly longer than those with wild-type KIAA1211 (P < 0.001). CONCLUSIONS: The current study highlights the potential role of genomic alterations for the prognosis of SCLC. Higher TMB was associated with a better prognosis, and KIAA1211 might be a good prognostic factor in SCLC.


Subject(s)
Biomarkers, Tumor/genetics , Lung Neoplasms/genetics , Microfilament Proteins/genetics , Mutation , Small Cell Lung Carcinoma/genetics , Female , Genetic Predisposition to Disease , Humans , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Middle Aged , Neoplasm Staging , Phenotype , Pregnancy , Progression-Free Survival , Risk Assessment , Risk Factors , Small Cell Lung Carcinoma/mortality , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/therapy
20.
Int J Radiat Biol ; 95(11): 1462-1471, 2019 11.
Article in English | MEDLINE | ID: mdl-31290713

ABSTRACT

Protein kinase CK2 is a ubiquitously expressed kinase in eukaryotes, which is known to phosphorylate many protein substrates. Because CK2 is involved in the regulation of various signaling pathways, we wondered whether CK2 participated in the regulation of ionizing radiation (IR) induced biological process. In this study, we investigated the effect of IR on the subcellular localization and kinase activity in human non-small cell lung cancer (NSCLC) cells. Immunofluorescent results showed that CK2 subunits shuttle into the nucleus mostly beginning 1 h after IR and lasting more than 6 h. We also conducted in vitro kinase assay and observed an increase in CK2 kinase activity at 6 h after IR. Furthermore, an increase in S phase was observed at 6 h after IR. Colony formation assay results demonstrated that CK2 inhibitor CX-4945 significantly enhanced the effect of irradiation in NSCLC cells. These results indicated that CK2 may be implicated in the regulation of IR-induced biological process.


Subject(s)
Carcinoma, Non-Small-Cell Lung/enzymology , Gene Expression Regulation, Enzymologic/radiation effects , Gene Expression Regulation, Neoplastic/radiation effects , Lung Neoplasms/enzymology , Radiation, Ionizing , Casein Kinase II/metabolism , Cell Cycle , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Survival , Cytoplasm/metabolism , Cytosol/metabolism , Genotype , Humans , Naphthyridines/pharmacology , Phenazines , Phosphorylation , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...