Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 193: 113573, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34425520

ABSTRACT

NAD+-dependent dehydrogenase-based biosensors usually suffer from the low accuracy due to the interference of cofactors in the complex environment, such as fermentation samples. Herein, we demonstrate the example of an integrated biosensor device that can be applied for analyzing xylose fermentation samples. The device is composed of one chamber for the elimination of NAD+ and NADH in the fermentation broth and another chamber for the sample analysis. In the first chamber, a cyclic voltammetry method coupled with Ni foam as a working electrode was proven to be effective in removing NAD+ and NADH in the fermentation broth. In the other chamber, xylose dehydrogenase, as the recognition element, and diaphorase, used for the regeneration of bioactive NAD+ mediated by vitamin K3, were co-immobilized on the surface of the magnetic nanoparticles, which was further coated onto a magnetic glassy carbon electrode. The detection range of the constructed biosensor was from 0.5 to 10 g L-1 with a detection limit of 0.01 g L-1 at a signal-to-noise ratio of 3. Moreover, the biosensor achieved high selectivity, recovery, reproducibility, and good long-time stability when analyzing real xylose fermentation samples, suggesting its promising application potential.


Subject(s)
Biosensing Techniques , Fermentation , NAD/metabolism , Oxidoreductases , Reproducibility of Results , Xylose
2.
J Agric Food Chem ; 69(1): 302-314, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33371670

ABSTRACT

Disaccharides are valuable oligosaccharides with an increasing demand in the food, cosmetic, and pharmaceutical industries. Disaccharides can be manufactured by extraction from the acid hydrolysate of plant-derived substrates, but this method has several issues, such as the difficulty in accessing natural substrates, laborious product separation processes, and troublesome wastewater treatment. A chemical synthesis using glucose was developed for producing disaccharides, but this approach suffers from a low product yield due to the low specificity and requires tedious protection and deprotection processes. In this study, we adopted an artificial strategy for producing a variety of value-added disaccharides from low-cost starch through the construction of an in vitro synthetic enzymatic platform: two enzymes worked in parallel to convert starch to glucose and glucose 1-phosphate, and these two intermediates were subsequently condensed together to a disaccharide by a disaccharide phosphorylase. Several disaccharides, such as laminaribiose, cellobiose, trehalose, and sophorose, were produced successfully from starch with the yields of more than 80% with the help of kinetic mathematical models to predict the optimal reaction conditions, exhibiting great potential in an industrial scale. This study provided a promising alternative to reform the mode of disaccharide manufacturing.


Subject(s)
Disaccharides/chemistry , Starch/chemistry , Biocatalysis , Cellobiose/chemistry , Kinetics , Phosphorylases/chemistry
3.
Analyst ; 145(16): 5563-5570, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32613959

ABSTRACT

The wide application of xylose in the food, beverage, and pharmaceutical industries, as well as in the booming field of biorefinery, raises the demand for a rapid, accurate, and real-time xylose-sensing technique to rival the conventional methods based on chromatography, spectroscopy, and electrochemical analysis using non-specific enzymes or abiotic catalysts. Herein, a hybrid system comprising polyethylene glycerol swing-arm-tethered NAD+ and xylose dehydrogenase (XDH), coupled with platinum nanoparticles deposited on carbon nanotubes (PtNPs@MWCNTs), was constructed for the real-time sensing of xylose. The use of the PtNPs@MWCNTs composite enhanced the sensitivity of the electric response and reduced the oxidation potential of NADH significantly. Further, the NAD+ immobilization allowed an increase in its microenvironment concentration and facilitated cofactor regeneration. The screen-printed electrode cast with the hybrid system showed a wide xylose detection range of 0.5 to 10 mM or 3.33 to 66.61 mM, and a low detection limit of 0.01 mM or 3.33 mM (S/N = 3), when connected to a potentiostat or a homemade portable biosensor, respectively. The biosensor also exhibited excellent working stability as it retained 82% of its initial performance after 30 days. The analysis of various xylose-containing samples further revealed the merits of our portable xylose biosensor in real-time sensing, including its rapid response, inexpensive instrumentation, and high selectivity, suggesting its great potential in practical applications.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanotubes, Carbon , Electrochemical Techniques , Electrodes , NAD , Oxidoreductases , Platinum , Xylose
4.
Article in English | MEDLINE | ID: mdl-32478043

ABSTRACT

In vitro synthetic enzymatic biosystem is considered to be the next generation of biomanufacturing platform. This biosystem contains multiple enzymes for the implementation of complicated biotransformatiom. However, the hard-to-reuse and instability of multiple enzymes limit the utilization of this biosystem in industrial process. Multi-enzyme immobilization might be a feasible alternative to address these problems. Herein, porous microspheres are used as carriers to co-immobilize multiple enzymes for producing inositol from starch. At first, all the enzymes (i.e., α-glucan phosphorylase aGP, phosphoglucose mutase PGM, inositol 1-phosphate synthase IPS, and inositol monophosphatase IMP) for converting starch to inositol were immobilized on porous microspheres individually to check the effect of immobilization, then all the enzymes are co-immobilized on porous microspheres. Compared to reaction system containing all the individual immobilized enzymes, the reaction system containing the co-immobilized enzymes exhibit ∼3.5 fold of reaction rate on producing inositol from starch. This reaction rate is comparable to that by free enzyme mixture. And the co-immobilized multi-enzyme system show higher thermal stability and recovery stability than free enzyme mixture. After 7 batches, the immobilized enzymes retain 45.6% relative yield, while the free enzyme mixture only retain 13.3% relative yield after 3 batches. Co-immobilization of multiple enzymes on porous microspheres for biomanufacturing would shed light on the application of in vitro synthetic enzymatic biosystem in industrial scale.

5.
Biotechnol Bioeng ; 116(10): 2710-2719, 2019 10.
Article in English | MEDLINE | ID: mdl-31237686

ABSTRACT

(-)-vibo-Quercitol (VQ: 1L-1,2,4/3,5-cyclohexanepentol), a form of deoxyinositol, is an alternative chiral building block in the synthesis of bioactive compounds to control diabetes. In this study, an adenosine triphosphate-free in vitro synthetic enzymatic biosystem composed of five enzymes (including one enzyme for NADH regeneration) was constructed to produce VQ from maltodextrin in one-pot. After optimization of reaction conditions, 7.6 g/L VQ was produced from 10 g/L maltodextrin with a product yield (mol/mol) of 77%, and 25.3 g/L VQ with a purity of 87% was produced from 50 g/L maltodextrin through simple scaling up of this nonfermentative enzymatic biosystem. Therefore, this study provides an economical and environmentally friendly method for the envisioned quercitol biosynthesis.


Subject(s)
Bacterial Proteins/chemistry , Enzymes/chemistry , Inositol/analogs & derivatives , Polysaccharides/chemistry , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Enzymes/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Inositol/chemical synthesis , Inositol/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
6.
Synth Syst Biotechnol ; 3(3): 204-210, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30345406

ABSTRACT

Cell-free synthetic enzymatic biosystem is emerging to expand the traditional biotechnological mode by utilizing a number of purified/partially purified enzymes and coenzymes in a single reaction vessel for the production of desired products from low-cost substrates. Here, a cell-free synthetic biosystem containing minimized number of reactions was designed for the conversion of d-glucose to l-lactate via pyruvate. This NADH-balanced biosystem was comprised of only 5 thermophilic enzymes without ATP supplementation. After optimization of enzyme loading amounts, buffer concentration and cofactor concentration, d-glucose was converted to l-lactate with a product yield of ∼90%. Our study has provided an emerging platform with potentials in producing pyruvate-derived chemicals, and may promote the development of cell-free synthetic enzymatic biosystems for biomanufacturing.

7.
Biotechnol Bioeng ; 114(8): 1855-1864, 2017 08.
Article in English | MEDLINE | ID: mdl-28409846

ABSTRACT

Myo-Inositol (vitamin B8) is widely used in the drug, cosmetic, and food & feed industries. Here, we present an in vitro non-fermentative enzymatic pathway that converts starch to inositol in one vessel. This in vitro pathway is comprised of four enzymes that operate without ATP or NAD+ supplementation. All enzyme BioBricks are carefully selected from hyperthermophilic microorganisms, that is, alpha-glucan phosphorylase from Thermotoga maritima, phosphoglucomutase from Thermococcus kodakarensis, inositol 1-phosphate synthase from Archaeoglobus fulgidus, and inositol monophosphatase from T. maritima. They were expressed efficiently in high-density fermentation of Escherichia coli BL21(DE3) and easily purified by heat treatment. The four-enzyme pathway supplemented with two other hyperthermophilic enzymes (i.e., 4-α-glucanotransferase from Thermococcus litoralis and isoamylase from Sulfolobus tokodaii) converts branched or linear starch to inositol, accomplishing a very high product yield of 98.9 ± 1.8% wt./wt. This in vitro (aeration-free) biomanufacturing has been successfully operated on 20,000-L reactors. Less costly inositol would be widely added in heath food, low-end soft drink, and animal feed, and may be converted to other value-added biochemicals (e.g., glucarate). This biochemical is the first product manufactured by the in vitro synthetic biology platform on an industrial scale. Biotechnol. Bioeng. 2017;114: 1855-1864. © 2017 Wiley Periodicals, Inc.


Subject(s)
Bioreactors/microbiology , Escherichia coli/physiology , Inositol/metabolism , Multienzyme Complexes/physiology , Protein Engineering/methods , Starch/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways/physiology , Drug Industry/methods , Inositol/genetics , Inositol/isolation & purification , Phosphoric Monoester Hydrolases , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Synthetic Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...