Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Fitoterapia ; 177: 106090, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906388

ABSTRACT

A chemical investigation of the aerial parts of Piper sarmentosum resulted in the isolation and identification of 14 amide alkaloids, including three new amide alkaloids, pipersarmenoids A - C (1-3), three new natural amide alkaloids, pipersarmenoids D - F (4-6), and 8 known analogues, N-p-coumaroyltyramine (7), piperlotine C (8), piperlotine D (9), pellitorine (10), sarmentine (11), aurantiamide acetate (12), 1-cinnamoyl pyrrolidine (13) and sarmentamide B (14). Their structures were determined by spectroscopic analysis including HRESIMS and 1D and 2D NMR. The cytotoxicity, neuroinflammation-inhibiting and acetylcholinesterase (AChE) inhibitory activities of those compounds were tested. Compounds 1, 2 and 12 inhibited NO production induced by LPS in BV2 cells with IC50 values of 9.36, 12.53 and 10.77 µM, respectively. Moreover, 1, 2, 7 and 11 showed moderate inhibitory activity on AChE with IC50 values ranging from 37.56 to 48.84 µM.

2.
Psychiatr Serv ; 75(3): 258-267, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37855101

ABSTRACT

OBJECTIVE: The authors investigated adaptations to outpatient care delivery and changes in treatment demand and engagement among patients receiving medications for opioid use disorder (MOUD) in the months after the declaration of the COVID-19 public health emergency in 2020. METHODS: Data were collected through an online survey (June-November 2020) of outpatient MOUD prescribers. The survey obtained information on outpatient practices' adaptations to MOUD treatment and urine drug screening (UDS) and elicited provider views on the effects of the COVID-19 pandemic on patient demand for, and engagement in, treatment. Multivariable regression analyses were used to examine associations among practice characteristics, patient engagement, and service adaptations. RESULTS: Of 516 respondents, 74% reported adaptations to MOUD delivery during the pandemic. Most respondents implemented virtual visits for initial (67%) and follow-up (77%) contacts. Prescribers of buprenorphine were more likely than those who did not prescribe the medication to report MOUD adaptations. Among respondents reporting any MOUD adaptation, 77% made adaptations to their UDS practices. Among 513 respondents who answered COVID-19-related questions, 89% reported that the pandemic had affected the treatment and engagement of their patients. Of these respondents, 30% reported increased difficulty with patient engagement, and 45% reported that their patients preferred virtual visits during this period, whereas 18% endorsed patient preference for in-person visits. CONCLUSIONS: Telehealth and federal regulatory easements in response to the COVID-19 pandemic enabled providers to continue treating patients for opioid use disorder in 2020. The results suggest that care adaptations and changes in patient demand and engagement were common in the practices surveyed.


Subject(s)
COVID-19 , Opioid-Related Disorders , Humans , Pandemics , Patient Participation , Ambulatory Care , Opioid-Related Disorders/drug therapy , Opioid-Related Disorders/epidemiology
3.
Inorg Chem ; 62(42): 17547-17554, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37811789

ABSTRACT

Blue phosphors of high efficiency and superior thermal stability constitute the critical component for achieving high-quality white light-emitting diodes (WLEDs). Herein, we report a highly efficient blue-emitting phosphor with superior thermal stability by heating Eu3+-doped Faujasite Y zeolite under a reducing atmosphere. The intensity and peak value of the phosphor are highly dependent on calcination temperature, and the intensity of PLE and PL spectra reaches a maximum at 1100 °C. Under the excitation of 360 nm, the phosphor shows a high quantum efficiency (90%) and thermal stability (the emission intensity at 423 K is about 125% of that at room temperature). WLEDs fabricated using this blue phosphor, a yellow Eu2+-SOD phosphor, and a commercially available red Sr2Si5N8:Eu2+ phosphor exhibit an excellent optical performance with a correlated color temperature of 4359 K and a color rendering index of 97. This work provides a new strategy for the synthesis of phosphors with high thermal stability and luminous efficiency.

4.
Mater Horiz ; 9(10): 2626-2632, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-35983747

ABSTRACT

The preparation of luminescent self-healing materials simultaneously featuring superior integrated mechanical properties is still a great challenge because the relationship between self-healing ability and mechanical capacities is conflicted. Here, transparent luminescent materials with balanced self-healing behavior, extreme toughness, and fast elastic recovery are prepared via hierarchical rigid domain design by coordinating lanthanide (Ln3+) to terpyridine (TPy) moieties linked to the polymer chains formed through polymerization of tolylene-2,4-diisocyanate-terminated polypropylene glycol (PPG-NCO) and 1,6-hexanediamine (HDA). The hierarchical rigid domain containing lanthanide-terpyridine (Ln3+-TPy) coordination interactions and H-bonds formed by urea and urethane leads to a tough network that features unprecedented toughness of 133.35 MJ m-3, which reaches 83% of that of typical spider silk (≈ 160 MJ m-3) and is also dynamic for fast self-healing at ambient temperature. Besides, the multi-color emission, ranging from red through orange and yellow to green, can be achieved via adjusting the molar ratio of Eu3+/Tb3+. We believe that the strategy applied in this work provides some insights for the preparation of high mechanical strength luminescence materials with self-healing properties.

5.
Nat Commun ; 9(1): 809, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29476133

ABSTRACT

Dislocations in crystals naturally break the symmetry of the bulk, introducing local atomic configurations with symmetries such as fivefold rings. But dislocations do not usually nucleate aperiodic structure along their length. Here we demonstrate the formation of extended binary quasicrystalline precipitates with Penrose-like random-tiling structures, beginning with chemical ordering within the pentagonal structure at cores of prismatic dislocations in Mg-Zn alloys. Atomic resolution observations indicate that icosahedral chains centered along [0001] pillars of Zn interstitial atoms are formed templated by the fivefold rings at dislocation cores. They subsequently form columns of rhombic and elongated hexagonal tiles parallel to the dislocation lines. Quasicrystalline precipitates are formed by random tiling of these rhombic and hexagonal tiles. Such precipitation may impact dislocation glide and alloy strength.

6.
Environ Sci Technol ; 47(21): 12148-55, 2013.
Article in English | MEDLINE | ID: mdl-24041398

ABSTRACT

Soil organic matter (SOM) in a peat soil, humic acid, and humin and their precursors (i.e., cellulose and lignin) were treated at high temperature (250 and 400 °C) with high pressure in a sealed platinum reaction kittle to simulate the influence of diagenesis on their composition and structure, and impact of the simulated diagenesis on sorption behaviors of hydrophobic organic compounds (HOCs) (i.e., naphthalene and 1-naphthol) by these samples was investigated. High temperature and pressure treatment greatly influenced chemical composition and physical properties of the original samples and their sorption for both naphthalene and 1-naphthol. Sorption of naphthalene by all samples was jointly regulated by hydrophobic and π-π interactions with their alkyl and aromatic carbon moieties, which was derived from the positive correlation between total hydrophobic carbon content of all sorbents and their organic carbon content-normalized sorption coefficients (Koc) for this compound (p = 0.075). However, sorption of 1-naphthol by the tested sorbents was governed by hydrogen bonding with their O-containing polar functionalities, as derived from the positive correlation between Koc values of 1-Naph and their polarity index ((O+N)/C). Difference in sorption mechanisms of naphthalene and 1-naphthol by the original and treated samples noted the great influence of chemical composition of sorbates on their interaction and essential roles of specific interactions (e.g., hydrogen bonding) in sorption of polar compound (i.e., 1-naphthol) to these sorbents. Surface area (SA) and porosity data of sorbents obtained from N2 sorption-desorption isotherms at 77 K showed that new SA and pores were created during the diagenetic process of all original samples, which provided substantial sorption sites and thus enhanced sorption of naphthalene and 1-naphthol. Among all tested samples, physicochemical properties of cellulose were most strongly affected by the simulated diagenetic process, and impact of such a process on its sorption intensity for the tested compounds was the most significant. The characterization data of the treated sorbents showed that the high temperature and pressure treatment similarly simulated the naturally occurring diagenesis of SOMs and their precursors, which is a first attempt. These findings are valuable for better understanding of the sorption behaviors of HOCs to SOM and its precursors as affected by diagenesis, which in turn is critical for elucidating the transport and fate of HOCs in the environment.


Subject(s)
Naphthalenes/chemistry , Naphthols/chemistry , Soil/chemistry , Adsorption , Carbon/chemistry , Cellulose/chemistry , Humic Substances , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Lignin/chemistry , Nitrogen/chemistry , Porosity , Soil Pollutants/chemistry , Temperature
7.
Environ Sci Process Impacts ; 15(9): 1652-64, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23880913

ABSTRACT

As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which nanomaterials may enter incinerator waste streams and the fate of these nanomaterials during the incineration process. Although the literature on incineration of nanomaterials is scarce, results from studies of their behavior at high temperature or in combustion environments for other applications can help predict their fate within an incinerator. Preliminary evidence suggests nanomaterials may catalyze the formation or destruction of combustion by-products. Depending on their composition, nanomaterials may undergo physical and chemical transformations within the incinerator, impacting their partitioning within the incineration system (e.g., bottom ash, fly ash) and the effectiveness of control technology for removing them. These transformations may also drastically affect nanomaterial transport and impacts in the environment. Current regulations on incinerator emissions do not specifically address nanomaterials, but limits on particle and metal emissions may prove somewhat effective at reducing the release of nanomaterials in incinerator effluent. Control technology used to meet these regulations, such as fabric filters, electrostatic precipitators, and wet electrostatic scrubbers, are expected to be at least partially effective at removing nanomaterials from incinerator flue gas.


Subject(s)
Environmental Pollutants/chemistry , Incineration/methods , Nanostructures/chemistry , Waste Management/methods , Environment , Equipment Design , Incineration/instrumentation , Waste Management/instrumentation
8.
Environ Sci Technol ; 46(13): 7252-9, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22676433

ABSTRACT

The sorption behavior of four hydrophobic organic contaminants (HOCs) (i.e., phenanthrene, naphthalene, lindane, and 1-naphthol) by three types of polymers namely polyethylene (PE), polystyrene (PS), and polyphenyleneoxide (PPO) was examined in this work. The organic carbon content-normalized sorption coefficients (K(oc)) of phenanthrene, lindane, and naphthalene by PEs of same composition but distinct physical makeup of domains increased with their crystallinity reduction (from 58.7 to 25.5%), suggesting that mobility and abundance of rubbery domains in polymers regulated HOC sorption. Cross-linking in styrene-divinylbenzene copolymer (PS2) created substantial surface area and porosity, thus, K(oc) values of phenanthrene, lindane, naphthalene, and 1-naphthol by PS2 were as high as 274.8, 212.3, 27.4, and 1.5 times of those by the linear polystyrene (PS1). The K(oc) values of lindane, naphthalene, and 1-naphthol by polar PPO were approximately 1-3 orders of magnitude higher than those by PS1, and PPO had comparable sorption for phenanthrene but higher sorption for naphthalene and 1-naphthol than PS2. This can be a result that a portion of O-containing moieties in PPO were masked in the interior part, while leaving the hydrophobic domains exposed outside, therefore demonstrating the great influence of the spatial arrangement of domains in polymers on HOC sorption.


Subject(s)
Hexachlorocyclohexane/chemistry , Naphthalenes/chemistry , Naphthols/chemistry , Phenanthrenes/chemistry , Polymers/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Adsorption , Hydrophobic and Hydrophilic Interactions , Oxides/chemistry , Polyethylene/chemistry , Polystyrenes/chemistry , Porosity
9.
Environ Sci Technol ; 46(7): 3891-7, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22376064

ABSTRACT

Suspension of the pristine and COOH-substituted multi-walled carbon nanotubes (P- and C-MWCNTs) with different outer diameters (ODs) by humic acids (HAs) from a peat soil was examined. Under shaking condition, MWCNTs were not suspended within 5 d. Without HAs, C-MWCNTs were slightly suspended by sonication within 16 h, but no suspension was observed for the pristine ones (P-MWCNTs). HAs greatly enhanced suspension of both P- and C-MWCNTs. The suspension enhancement was attributed to HA sorption, which increased electrostatic repulsion and steric hindrance between individual MWCNTs. Introduction of O-containing hydrophilic moieties to MWCNTs via HA sorption enhanced the interactions of their surfaces with water through H-bonding. Suspending capability of various MWCNTs on suspended mass concentration basis by four HAs showed inconsistent orders with the increasing or decreasing trend of their ODs. However, the suspended surface area concentrations of both P- and C-MWCNTs by individual HAs consistently followed an order of P8 > P30 > P50, and C8 > C30 > C50 (P and C, respectively, refer to P- and C-MWCNTs, and the numbers represent their ODs). These data implied that MWCNTs with smaller OD could be more strongly suspended by a given HA relative to those with larger OD under sonication condition.


Subject(s)
Humic Substances/analysis , Nanotubes, Carbon/chemistry , Soil/chemistry , Kinetics , Oxygen/chemistry , Porosity , Static Electricity , Surface Properties , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...