Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(27): 14963-14980, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37379365

ABSTRACT

To investigate the potential of tumor-targeting photoactivated chemotherapy, a chiral ruthenium-based anticancer warhead, Λ/Δ-[Ru(Ph2phen)2(OH2)2]2+, was conjugated to the RGD-containing Ac-MRGDH-NH2 peptide by direct coordination of the M and H residues to the metal. This design afforded two diastereoisomers of a cyclic metallopeptide, Λ-[1]Cl2 and Δ-[1]Cl2. In the dark, the ruthenium-chelating peptide had a triple action. First, it prevented other biomolecules from coordinating with the metal center. Second, its hydrophilicity made [1]Cl2 amphiphilic so that it self-assembled in culture medium into nanoparticles. Third, it acted as a tumor-targeting motif by strongly binding to the integrin (Kd = 0.061 µM for the binding of Λ-[1]Cl2 to αIIbß3), which resulted in the receptor-mediated uptake of the conjugate in vitro. Phototoxicity studies in two-dimensional (2D) monolayers of A549, U87MG, and PC-3 human cancer cell lines and U87MG three-dimensional (3D) tumor spheroids showed that the two isomers of [1]Cl2 were strongly phototoxic, with photoindexes up to 17. Mechanistic studies indicated that such phototoxicity was due to a combination of photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) effects, resulting from both reactive oxygen species generation and peptide photosubstitution. Finally, in vivo studies in a subcutaneous U87MG glioblastoma mice model showed that [1]Cl2 efficiently accumulated in the tumor 12 h after injection, where green light irradiation generated a stronger tumoricidal effect than a nontargeted analogue ruthenium complex [2]Cl2. Considering the absence of systemic toxicity for the treated mice, these results demonstrate the high potential of light-sensitive integrin-targeted ruthenium-based anticancer compounds for the treatment of brain cancer in vivo.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Coordination Complexes , Prodrugs , Ruthenium , Animals , Humans , Mice , Ruthenium/pharmacology , Ruthenium/chemistry , Prodrugs/pharmacology , Prodrugs/therapeutic use , Prodrugs/chemistry , Integrins , Peptides, Cyclic , Peptides , Brain Neoplasms/drug therapy , Cell Line, Tumor , Coordination Complexes/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry
2.
Nat Chem ; 15(7): 980-987, 2023 07.
Article in English | MEDLINE | ID: mdl-37169984

ABSTRACT

Self-assembling molecular drugs combine the easy preparation typical of small-molecule chemotherapy and the tumour-targeting properties of drug-nanoparticle conjugates. However, they require a supramolecular interaction that survives the complex environment of a living animal. Here we report that the metallophilic interaction between cyclometalated palladium complexes generates supramolecular nanostructures in living mice that have a long circulation time (over 12 h) and efficient tumour accumulation rate (up to 10.2% of the injected dose per gram) in a skin melanoma tumour model. Green light activation leads to efficient tumour destruction due to the type I photodynamic effect generated by the self-assembled palladium complexes, as demonstrated in vitro by an up to 96-fold cytotoxicity increase upon irradiation. This work demonstrates that metallophilic interactions are well suited to generating stable supramolecular nanotherapeutics in vivo with exceptional tumour-targeting properties.


Subject(s)
Antineoplastic Agents , Nanoparticles , Nanostructures , Skin Neoplasms , Animals , Mice , Palladium , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Nanoparticles/chemistry
3.
Dalton Trans ; 52(3): 598-608, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36562298

ABSTRACT

Metal compounds form an attractive class of ligands for a variety of nucleic acids. Five metal complexes bearing aminopyridyl-2,2'-bipyridine tetradentate ligands and possessing a quasi-planar geometry were challenged toward different types of nucleic acid molecules including RNA polynucleotides in the duplex or triplex form, an RNA Holliday four-way junction, natural double helix DNA and a DNA G-quadruplex. The binding process was monitored comparatively using different spectroscopic and melting methods. The binding preferences that emerge from our analysis are discussed in relation to the structural features of the metal complexes.


Subject(s)
Coordination Complexes , Platinum , Platinum/chemistry , Coordination Complexes/chemistry , 2,2'-Dipyridyl , Palladium/chemistry , Gold , Ligands , DNA/chemistry , RNA
4.
Chem Sci ; 13(23): 6899-6919, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35774173

ABSTRACT

In vivo data are rare but essential for establishing the clinical potential of ruthenium-based photoactivated chemotherapy (PACT) compounds, a new family of phototherapeutic drugs that are activated via ligand photosubstitution. Here a novel trisheteroleptic ruthenium complex [Ru(dpp)(bpy)(mtmp)](PF6)2 ([2](PF6)2, dpp = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2'-bipyridine, mtmp = 2-methylthiomethylpyridine) was synthesized and its light-activated anticancer properties were validated in cancer cell monolayers, 3D tumor spheroids, and in embryonic zebrafish cancer models. Upon green light irradiation, the non-toxic mtmp ligand is selectively cleaved off, thereby releasing a phototoxic ruthenium-based photoproduct capable notably of binding to nuclear DNA and triggering DNA damage and apoptosis within 24-48 h. In vitro, fifteen minutes of green light irradiation (21 mW cm-2, 19 J cm-2, 520 nm) were sufficient to generate high phototherapeutic indexes (PI) for this compound in a range of cancer cell lines including lung (A549), prostate (PC3Pro4), conjunctival melanoma (CRMM1, CRMM2, CM2005.1) and uveal melanoma (OMM1, OMM2.5, Mel270) cancer cell lines. The therapeutic potential of [2](PF6)2 was further evaluated in zebrafish embryo ectopic (PC3Pro4) or orthotopic (CRMM1, CRMM2) tumour models. The ectopic model consisted of red fluorescent PC3Pro4-mCherry cells injected intravenously (IV) into zebrafish, that formed perivascular metastatic lesions at the posterior ventral end of caudal hematopoietic tissue (CHT). By contrast, in the orthotopic model, CRMM1- and CRMM2-mCherry cells were injected behind the eye where they developed primary lesions. The maximally-tolerated dose (MTD) of [2](PF6)2 was first determined for three different modes of compound administration: (i) incubating the fish in prodrug-containing water (WA); (ii) injecting the prodrug intravenously (IV) into the fish; or (iii) injecting the prodrug retro-orbitally (RO) into the fish. To test the anticancer efficiency of [2](PF6)2, the embryos were treated 24 h after engraftment at the MTD. Optimally, four consecutive PACT treatments were performed on engrafted embryos using 60 min drug-to-light intervals and 90 min green light irradiation (21 mW cm-2, 114 J cm-2, 520 nm). Most importantly, this PACT protocol was not toxic to the zebrafish. In the ectopic prostate tumour models, where [2](PF6)2 showed the highest photoindex in vitro (PI > 31), the PACT treatment did not significantly diminish the growth of primary lesions, while in both conjunctival melanoma orthotopic tumour models, where [2](PF6)2 showed more modest photoindexes (PI ∼ 9), retro-orbitally administered PACT treatment significantly inhibited growth of the engrafted tumors. Overall, this study represents the first demonstration in zebrafish cancer models of the clinical potential of ruthenium-based PACT, here against conjunctival melanoma.

5.
Nanomaterials (Basel) ; 11(11)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34835853

ABSTRACT

Green light photoactive Ru-based coordination polymer nanoparticles (CPNs), with chemical formula [[Ru(biqbpy)]1.5(bis)](PF6)3 (biqbpy = 6,6'-bis[N-(isoquinolyl)-1-amino]-2,2'-bipyridine; bis = bis(imidazol-1-yl)-hexane), were obtained through polymerization of the trans-[Ru(biqbpy)(dmso)Cl]Cl complex (Complex 1) and bis bridging ligands. The as-synthesized CPNs (50 ± 12 nm diameter) showed high colloidal and chemical stability in physiological solutions. The axial bis(imidazole) ligands coordinated to the ruthenium center were photosubstituted by water upon light irradiation in aqueous medium to generate the aqueous substituted and active ruthenium complexes. The UV-Vis spectral variations observed for the suspension upon irradiation corroborated the photoactivation of the CPNs, while High Performance Liquid Chromatography (HPLC) of irradiated particles in physiological media allowed for the first time precisely quantifying the amount of photoreleased complex from the polymeric material. In vitro studies with A431 and A549 cancer cell lines revealed an 11-fold increased uptake for the nanoparticles compared to the monomeric complex [Ru(biqbpy)(N-methylimidazole)2](PF6)2 (Complex 2). After irradiation (520 nm, 39.3 J/cm2), the CPNs yielded up to a two-fold increase in cytotoxicity compared to the same CPNs kept in the dark, indicating a selective effect by light irradiation. Meanwhile, the absence of 1O2 production from both nanostructured and monomeric prodrugs concluded that light-induced cell death is not caused by a photodynamic effect but rather by photoactivated chemotherapy.

6.
Adv Mater ; 33(37): e2008613, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34338371

ABSTRACT

Many drug delivery systems end up in the lysosome because they are built from covalent or kinetically inert supramolecular bonds. To reach other organelles, nanoparticles hence need to either be made from a kinetically labile interaction that allows re-assembly of the nanoparticles inside the cell following endocytic uptake, or, be taken up by a mechanism that short-circuits the classical endocytosis pathway. In this work, the intracellular fate of nanorods that self-assemble via the Pt…Pt interaction of cyclometalated platinum(II) compounds, is studied. These deep-red emissive nanostructures (638 nm excitation, ≈700 nm emission) are stabilized by proteins in cell medium. Once in contact with cancer cells, they cross the cell membrane via dynamin- and clathrin-dependent endocytosis. However, time-dependent confocal colocalization and cellular electron microscopy demonstrate that they directly move to mitochondria without passing by the lysosomes. Altogether, this study suggests that Pt…Pt interaction is strong enough to generate emissive, aggregated nanoparticles inside cells, but labile enough to allow these nanostructures to reach the mitochondria without being trapped in the lysosomes. These findings open new venues to the development of bioimaging nanoplatforms based on the Pt…Pt interaction.


Subject(s)
Coordination Complexes/chemistry , Nanostructures/chemistry , Platinum/chemistry , Cell Line, Tumor , Coordination Complexes/metabolism , Endocytosis , Humans , Microscopy, Confocal , Microscopy, Electron, Scanning , Mitochondria/chemistry , Mitochondria/metabolism , Quantum Theory
7.
J Biol Inorg Chem ; 26(6): 667-674, 2021 09.
Article in English | MEDLINE | ID: mdl-34378103

ABSTRACT

The known ruthenium complex [Ru(tpy)(bpy)(Hmte)](PF6)2 ([1](PF6)2, where tpy = 2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, Hmte = 2-(methylthio)ethanol) is photosubstitutionally active but non-toxic to cancer cells even upon light irradiation. In this work, the two analogs complexes [Ru(tpy)(NN)(Hmte)](PF6)2, where NN = 3,3'-biisoquinoline (i-biq, [2](PF6)2) and di(isoquinolin-3-yl)amine (i-Hdiqa, [3](PF6)2), were synthesized and their photochemistry and phototoxicity evaluated to assess their suitability as photoactivated chemotherapy (PACT) agents. The increase of the aromatic surface of [2](PF6)2 and [3](PF6)2, compared to [1](PF6)2, leads to higher lipophilicity and higher cellular uptake for the former complexes. Such improved uptake is directly correlated to the cytotoxicity of these compounds in the dark: while [2](PF6)2 and [3](PF6)2 showed low EC50 values in human cancer cells, [1](PF6)2 is not cytotoxic due to poor cellular uptake. While stable in the dark, all complexes substituted the protecting thioether ligand upon light irradiation (520 nm), with the highest photosubstitution quantum yield found for [3](PF6)2 (Φ[3] = 0.070). Compounds [2](PF6)2 and [3](PF6)2 were found both more cytotoxic after light activation than in the dark, with a photo index of 4. Considering the very low singlet oxygen quantum yields of these compounds, and the lack of cytotoxicity of the photoreleased Hmte thioether ligand, it can be concluded that the toxicity observed after light activation is due to the photoreleased aqua complexes [Ru(tpy)(NN)(OH2)]2+, and thus that [2](PF6)2 and [3](PF6)2 are promising PACT candidates.


Subject(s)
Ruthenium Compounds/chemical synthesis , Ruthenium Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Humans , Models, Molecular , Molecular Structure , Ruthenium , Ruthenium Compounds/chemistry
8.
JACS Au ; 1(4): 380-395, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-34056633

ABSTRACT

In this work, a pair of gold(III) complexes derived from the analogous tetrapyridyl ligands H2biqbpy1 and H2biqbpy2 was prepared: the rollover, bis-cyclometalated [Au(biqbpy1)Cl ([1]Cl) and its isomer [Au(biqbpy2)Cl ([2]Cl). In [1]+, two pyridyl rings coordinate to the metal via a Au-C bond (C∧N∧N∧C coordination) and the two noncoordinated amine bridges of the ligand remain protonated, while in [2]+ all four pyridyl rings of the ligand coordinate to the metal via a Au-N bond (N∧N∧N∧N coordination), but both amine bridges are deprotonated. As a result, both complexes are monocationic, which allowed comparison of the sole effect of cyclometalation on the chemistry, protein interaction, and anticancer properties of the gold(III) compounds. Due to their identical monocationic charge and similar molecular shape, both complexes [1]Cl and [2]Cl displaced reference radioligand [3H]dofetilide equally well from cell membranes expressing the Kv11.1 (hERG) potassium channel, and more so than the tetrapyridyl ligands H2biqbpy1 and H2biqbpy2. By contrast, cyclometalation rendered [1]Cl coordinatively stable in the presence of biological thiols, while [2]Cl was reduced by a millimolar concentration of glutathione into metastable Au(I) species releasing the free ligand H2biqbpy2 and TrxR-inhibiting Au+ ions. The redox stability of [1]Cl dramatically decreased its thioredoxin reductase (TrxR) inhibition properties, compared to [2]Cl. On the other hand, unlike [2]Cl, [1]Cl aggregated into nanoparticles in FCS-containing medium, which resulted in much more efficient gold cellular uptake. [1]Cl had much more selective anticancer properties than [2]Cl and cisplatin, as it was almost 10 times more cytotoxic to human cancer cells (A549, A431, A375, and MCF7) than to noncancerous cells (MRC5). Mechanistic studies highlight the strikingly different mode of action of the two compounds: while for [1]Cl high gold cellular uptake, nuclear DNA damage, and interaction with hERG may contribute to cell killing, for [2]Cl extracellular reduction released TrxR-inhibiting Au+ ions that were taken up in minute amounts in the cytosol, and a toxic tetrapyridyl ligand also capable of binding to hERG. These results demonstrate that bis-cyclometalation is an appealing method to improve the redox stability of Au(III) compounds and to develop gold-based cytotoxic compounds that do not rely on TrxR inhibition to kill cancer cells.

9.
Inorg Chem ; 59(11): 7710-7720, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32396371

ABSTRACT

Studying metal-protein interactions is key for understanding the fate of metallodrugs in biological systems. When a metal complex is not emissive and too weakly bound for mass spectrometry analysis, however, it may become challenging to study such interactions. In this work a synthetic procedure was developed for the alkyne functionalization of a photolabile ruthenium polypyridyl complex, [Ru(tpy)(bpy)(Hmte)](PF6)2, where tpy = 2,2':6',2''-terpyridine, bpy = 2,2'-bipyridine, and Hmte = 2-(methylthio)ethanol. In the functionalized complex [Ru(HCC-tpy)(bpy)(Hmte)](PF6)2, where HCC-tpy = 4'-ethynyl-2,2':6',2''-terpyridine, the alkyne group can be used for bioorthogonal ligation to an azide-labeled fluorophore using copper-catalyzed "click" chemistry. We developed a gel-based click chemistry method to study the interaction between this ruthenium complex and bovine serum albumin (BSA). Our results demonstrate that visualization of the interaction between the metal complex and the protein is possible, even when this interaction is too weak to be studied by conventional means such as UV-vis spectroscopy or ESI mass spectrometry. In addition, the weak metal complex-protein interaction is controlled by visible light irradiation, i.e., the complex and the protein do not interact in the dark, but they do interact via weak van der Waals interactions after light activation of the complex, which triggers photosubstitution of the Hmte ligand.


Subject(s)
Alkynes/chemistry , Coordination Complexes/chemistry , Photosensitizing Agents/chemistry , Ruthenium/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle , Click Chemistry , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Photosensitizing Agents/chemical synthesis
10.
J Am Chem Soc ; 142(23): 10383-10399, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32378894

ABSTRACT

Enhanced passive diffusion is usually considered to be the primary cause of the enhanced cellular uptake of cyclometalated drugs because cyclometalation lowers the charge of a metal complex and increases its lipophilicity. However, in this work, monocationic cyclometalated palladium complexes [1]OAc (N^N^C^N) and [2]OAc (N^N^N^C) were found to self-assemble, in aqueous solutions, into soluble supramolecular nanorods, while their tetrapyridyl bicationic analogue [3](OAc)2 (N^N^N^N) dissolved as isolated molecules. These nanorods formed via metallophilic Pd···Pd interaction and π-π stacking and were stabilized in the cell medium by serum proteins, in the absence of which the nanorods precipitated. In cell cultures, these protein-stabilized self-assembled nanorods were responsible for the improved cellular uptake of the cyclometalated compounds, which took place via endocytosis (i.e., an active uptake pathway). In addition to triggering self-assembly, cyclometalation in [1]OAc also led to dramatically enhanced photodynamic properties under blue light irradiation. These combined penetration and photodynamic properties were observed in multicellular tumor spheroids and in a mice tumor xenograft, demonstrating that protein-stabilized nanoaggregation of cyclometalated drugs such as [1]OAc also allows efficient cellular uptake in 3D tumor models. Overall, serum proteins appear to be a major element in drug design because they strongly influence the size and bioavailability of supramolecular drug aggregates and hence their efficacy in vitro and in vivo.


Subject(s)
Blood Proteins/chemistry , Nanotubes/chemistry , Organometallic Compounds/chemistry , Palladium/chemistry , Photosensitizing Agents/chemistry , Cell Hypoxia/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Organometallic Compounds/chemical synthesis , Organometallic Compounds/pharmacology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/pharmacology , Protein Stability
11.
Cancers (Basel) ; 12(3)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143295

ABSTRACT

The ruthenium-based photosensitizer (PS) TLD1433 has completed a phase I clinical trial for photodynamic therapy (PDT) treatment of bladder cancer. Here, we investigated a possible repurposing of this drug for treatment of conjunctival melanoma (CM). CM is a rare but often deadly ocular cancer. The efficacy of TLD1433 was tested on several cell lines from CM (CRMM1, CRMM2 and CM2005), uveal melanoma (OMM1, OMM2.5, MEL270), epidermoid carcinoma (A431) and cutaneous melanoma (A375). Using 15 min green light irradiation (21 mW/cm2, 19 J.cm-2, 520 nm), the highest phototherapeutic index (PI) was reached in CM cells, with cell death occurring via apoptosis and necrosis. The therapeutic potential of TLD1433 was hence further validated in zebrafish ectopic and newly-developed orthotopic CM models. Fluorescent CRMM1 and CRMM2 cells were injected into the circulation of zebrafish (ectopic model) or behind the eye (orthotopic model) and 24 h later, the engrafted embryos were treated with the maximally-tolerated dose of TLD1433. The drug was administrated in three ways, either by (i) incubating the fish in drug-containing water (WA), or (ii) injecting the drug intravenously into the fish (IV), or (iii) injecting the drug retro-orbitally (RO) into the fish. Optimally, four consecutive PDT treatments were performed on engrafted embryos using 60 min drug-to-light intervals and 90 min green light irradiation (21 mW/cm2, 114 J.cm-2, 520 nm). This PDT protocol was not toxic to the fish. In the ectopic tumour model, both systemic administration by IV injection and RO injection of TLD1433 significantly inhibited growth of engrafted CRMM1 and CRMM2 cells. However, in the orthotopic model, tumour growth was only attenuated by localized RO injection of TLD1433. These data unequivocally prove that the zebrafish provides a fast vertebrate cancer model that can be used to test the administration regimen, host toxicity and anti-cancer efficacy of PDT drugs against CM. Based on our results, we suggest repurposing of TLD1433 for treatment of incurable CM and further testing in alternative pre-clinical models.

12.
Chem Commun (Camb) ; 55(32): 4695-4698, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30942201

ABSTRACT

This report demonstrates that changing the position of the carbon-metal bond in a polypyridyl cyclopalladated complex, i.e. going from PdL1 (N^N^C^N) to PdL2 (N^N^N^C), dramatically influences the photodynamic properties of the complex in cancer cells. This effect is primarily attributed to the significantly difference in absorbance and singlet oxygen quantum yields between the two isomers.


Subject(s)
Antineoplastic Agents/pharmacology , Organometallic Compounds/pharmacology , Palladium/chemistry , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/radiation effects , Cell Line, Tumor , Density Functional Theory , Humans , Isomerism , Light , Models, Chemical , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Organometallic Compounds/radiation effects , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Photosensitizing Agents/radiation effects , Singlet Oxygen/metabolism
13.
Eur J Med Chem ; 114: 244-56, 2016 May 23.
Article in English | MEDLINE | ID: mdl-26994692

ABSTRACT

Four copper(II) complexes with chiral Schiff-base ligands, [Cu(R-L(1))2]·EtOAc (1) and [Cu(S-L(1))2]·EtOAc (2), [Cu(R-L(2))2]·EtOAc (3) and [Cu(S-L(2))2]·EtOAc (4), (R/S-HL(1) = (R/S)-(1-naththyl)-salicylaldimine, R/S-HL(2) = (R/S)-(1-naththyl)-3-methoxysalicylaldimine, EtOAc = ethyl acetate) were synthesized to serve as artificial nucleases and anticancer drugs. All complexes and R/S-HL(1) ligands were structurally characterized by X-ray crystallography. The interaction of these complexes with CT-DNA was researched via several spectroscopy methods, which indicates that complexes bind to CT-DNA by moderate intercalation binding mode. Moreover, DNA cleavage experiments revealed that the complexes exhibited remarkable DNA cleavage activities in the presence of H2O2via the generation of hydroxyl radical. Particularly, complex 4 also could nick DNA with the production of (1)O2. And all complexes exhibited excellent cytotoxicity to MDA-MB-231, A549 and Hela human cancer cells in micromole magnitude. Furthermore, complex 4 exhibited comparable cytotoxic effect to cisplatin against the proliferation of MDA-MB-231 and A549 cancer cells, as well as showed better anticancer ability to the three cancer cells than the other complexes. The results of cell cycle analysis indicated that complexes 3-4 could induce G2/M phase cell cycle arrest. Furthermore, MDA-MB-231 cells treated with 3 and 4 were subjected to apoptosis and death by generation of ROS and the activation of caspase-3. Interestingly, the chiral complexes 3 and 4 may induce cell apoptosis through extrinsic and mitochondrial intrinsic pathway, respectively.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Copper/pharmacology , DNA/chemistry , Organometallic Compounds/pharmacology , Schiff Bases/chemistry , Serum Albumin, Bovine/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Binding Sites/drug effects , Cattle , Cell Line, Tumor , Cell Proliferation/drug effects , Copper/chemistry , Crystallography, X-Ray , DNA Cleavage , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Ligands , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Schiff Bases/chemical synthesis , Schiff Bases/pharmacology , Structure-Activity Relationship
14.
Dalton Trans ; 44(20): 9516-27, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25919814

ABSTRACT

Six novel copper(ii) complexes of [CuCl]ClO4 (), [Cu(acac)]PF6 (), [CuCl]2(PF6)2 (), [CuCl]2(PF6)2 (), [Cu(acac)]PF6 () and [Cu(acac)]PF6 (), ( = 1-naphthyl-N,N-[bis(2-pyridyl)methyl]amine, = R/S-1-naphthyl-N,N-[bis(2-pyridyl)methyl]ethanamine, acac = diacetone) were synthesized to serve as artificial nucleases. All complexes were structurally characterized using X-ray crystallography. The crystal structures showed the presence of distorted square-planar CuLCl (, and ) and distorted tetragonal-pyramidal CuL(acac) (, and ) geometry. The interaction of these complexes with calf thymus DNA (CT-DNA) was researched by means of several spectroscopy methods, which indicated that the complexes were bound to CT-DNA by an intercalation binding mode. DNA cleavage experiments revealed that the complexes exhibited remarkable DNA cleavage activities in the presence of H2O2, and single oxygen ((1)O2) or hydroxyl radicals may serve as the major cleavage active species. In particular, the in vitro cytotoxicity of the complexes on four human cancer cell lines (HeLa, MCF-7, Bel-7404 and HepG-2) demonstrated that the six compounds had broad-spectrum anti-cancer activity with low IC50 values. The stronger cytotoxicity and DNA cleavage activity of the chiral enantiomers compared with chiral analogues verified the influence of chirality on the antitumor activity of complexes. Meanwhile, the protein binding ability was revealed by quenching of tryptophan emission with the addition of complexes using BSA as a model protein. The results indicated that the quenching mechanism of BSA by the complexes was a static process.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Copper/chemistry , DNA/metabolism , Organometallic Compounds/chemical synthesis , Organometallic Compounds/pharmacology , Serum Albumin, Bovine/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cattle , Cell Line, Tumor , Chemistry Techniques, Synthetic , DNA/chemistry , DNA Cleavage/drug effects , Humans , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...