Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Nat Commun ; 15(1): 3264, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627405

ABSTRACT

A long-standing challenge in bioinspired materials is to design and synthesize synthetic materials that mimic the sophisticated structures and functions of natural biomaterials, such as helical protein assemblies that are important in biological systems. Herein, we report the formation of a series of nanohelices from a type of well-developed protein-mimetics called peptoids. We demonstrate that nanohelix structures and supramolecular chirality can be well-controlled through the side-chain chemistry. Specifically, the ionic effects on peptoids from varying the polar side-chain groups result in the formation of either single helical fiber or hierarchically stacked helical bundles. We also demonstrate that the supramolecular chirality of assembled peptoid helices can be controlled by modifying assembling peptoids with a single chiral amino acid side chain. Computational simulations and theoretical modeling predict that minimizing exposure of hydrophobic domains within a twisted helical form presents the most thermodynamically favorable packing of these amphiphilic peptoids and suggests a key role for both polar and hydrophobic domains on nanohelix formation. Our findings establish a platform to design and synthesize chiral functional materials using sequence-defined synthetic polymers.


Subject(s)
Peptoids , Peptoids/chemistry , Amino Acids
2.
Adv Mater ; 36(26): e2400279, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548708

ABSTRACT

Light detection and ranging (LiDAR) is indispensable in applications such as unmanned aerial vehicles, autonomous driving, and biomimetic robots. However, the precision and available distance of LiDAR are constrained by the speed and sensitivity of the photodetector, necessitating the use of expensive and energy-consuming avalanche diodes. To address these challenges, in this study, a pyroelectricity-based acceleration strategy with 2D-(graded 3D) perovskite heterojunction is proposed to achieve a record high speed (27.7 ns with an active area of 9 mm2, and 176 ps with an active area of 0.2 mm2) and high responsivity (0.65 A W-1) at zero bias. This success is attributed to the unique mechanism where the electrons from the pyroelectric effect at the Cl-rich 2D/3D interface directly recombine with excess holes during light-dark transitions, breaking speed limitations related to carrier mobility and capacitive effect. Furthermore, the introduced pyroelectric effect significantly enhances the photoresponse, resulting in a self-powered external quantum efficiency exceeding 100%. The study also demonstrates precise position detection at the centimeter level. In conclusion, this research presents a pioneering approach for developing high-speed photodiodes with exceptional sensitivity, mitigating energy and cost concerns in LiDAR applications.

3.
Front Plant Sci ; 15: 1270388, 2024.
Article in English | MEDLINE | ID: mdl-38332770

ABSTRACT

Grain quality indicates rice commodity value. This research compared grain quality and physicochemical properties of premium japonica rice from three production regions, Yangtze River downstream of China (YRDCN), Northeast region of China (NECN) and Japan. Results showed that there were distinct quality and physicochemical characteristics variance among the three groups of japonica rice, while CVs of most quality parameters from low to high was Japan, YRDCN and NECN. YRDCN rice presented obvious lower apparent amylose content (AAC) and ratio of each chain-length sections of amylopectin, and showed higher protein contents especially glutelin and ratio in short and intermediate amylopectin molecules. Among three rice groups, YRDCN rice presented weaker appearance, whereas did not show inferior cooking and eating properties, which was primarily linked to lower AAC. Rice AAC and starch fine structure significantly correlated with pasting parameters, swelling power and solubility, while protein content had close relation with taste analyzer parameters. Results of this study indicated improvement direction for japonica rice of YRDCN, and also provided reference for consumers' rice purchasing selection in accordance with individual taste preference.

4.
Adv Sci (Weinh) ; 11(10): e2308220, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233211

ABSTRACT

Single-molecule toroics are molecular magnets with vortex distribution of magnetic moments. The coupling between magnetic and electric properties such as the magnetodielectric effect will provide potential applications for them. Herein, the observation of significant magnetodielectric effect in a triangular Dy3 crystal with toroidal magnetic moment and multiple magnetic relaxations is reported. The analysis of magnetic and electric properties implies that the magnetodielectric effect is closely related to the strong spin-lattice coupling, magnetic interactions of Dy3+ ions, as well as molecular packing models.

5.
Front Neurol ; 14: 1241158, 2023.
Article in English | MEDLINE | ID: mdl-38073625

ABSTRACT

Objective: Intracerebral hemorrhage (ICH) is a significant cause of global mortality and morbidity. This study aimed to analyze the burden of ICH and its variation trends across 204 countries and territories from 1990 to 2019. Materials and methods: The study population comprised individuals of all ages and genders with ICH in 204 countries and regions between 1990 and 2019. Utilizing data from the Global Burden of Disease (GBD) study 2019, we collected information on age-standardized incidence rate (ASIR), age-standardized death rate (ASDR), and disability-adjusted life-years (DALYs) rate, which were compared by age, gender, and socio-demographic index (SDI). Results: In 2019, there were an estimated 3.4 million (3.0-3.9) incident cases, resulting in 2.8 million (2.6-3.0) deaths and 68.5 million (63.2-73.6) DALYs due to ICH. Between 1990 and 2019, the absolute number of incident cases, deaths, and DALYs increased by 43.0% (41.0-45.0), 37.0% (22.0-51.0), and 25.0% (12.0-36.0), respectively. However, the ASIR, ASDR, and DALYs showed a decreasing trend of-29.0% (-28.0 to -30.0), -36.0% (-29.0 to -43.0), and - 37.0% (-43.0 to -31.0), respectively. Countries with lower SDI tended to have higher ASIR, ASDR, and DALY rates. Conclusion: While the ASDR and DALY rates decreased from 1990 to 2019, the decline in ASIR was less pronounced. The global burden of ICH remains high, exhibiting significant variation across different genders, age groups, and SDI levels.

6.
Materials (Basel) ; 16(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38068144

ABSTRACT

The low strength caused by the single FCC structure of the CrMnFeCoNi high entropy alloy (HEA) limits its application in the field of coating. Here, we prepared high-entropy alloy coatings of CrMnFeCoNi with different ZrC contents on Q235 steel by a plasma transferred arc process. The effects of ZrC on the microstructure and properties of the CrMnFeCoNi HEA coating were investigated by optical microscopy, scanning electron microscope, and X-ray diffraction and by employing a potensiostat/galvanostat. The results showed that ZrC mainly existed in the coatings as a second phase, having little influence on the main crystal structure and micromorphology of the CrMnFeCoNi HEA coating. The hardness of the CrMnFeCoNi HEA coating increased with the ZrC content. ZrC can effectively improve the corrosion resistance of the CrMnFeCoNi HEA coating. In a 1 mol/L NaCl solution with 4 wt% ZrC, the annual corrosion rate was only 5.997% of that of the HEA coating. Nevertheless, the improvement in the wear resistance of CrMnFeCoNi high-entropy alloy coatings was not apparent with the addition of ZrC. Consequently, the addition of ZrC to the FeCoCrNiMn high-entropy alloy coating holds promise for applications in corrosion resistance, particularly in oceanic environments.

7.
Opt Express ; 31(22): 36171-36187, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38017772

ABSTRACT

Infrared image super-resolution technology aims to overcome the pixel size limitation of the infrared focal plane array for higher resolution images. Due to the real-world images with different resolutions having more complex degradation processes than mathematical calculation, most existing super-resolution methods using the synthetic data obtained by bicubic interpolation achieve unsatisfactory reconstruction performance in real-world scenes. To solve this, this paper innovatively proposes an infrared real-world dataset with different resolutions based on a refrigerated thermal detector and the infrared zoom lens, enabling the network to acquire more realistic details. We obtain images under different fields of view by adjusting the infrared zoom lens and then achieve the scale and luminance alignment of high and low-resolution (HR-LR) images. This dataset can be used for infrared image super-resolution, with an up-sampling scale of two. In order to learn complex features of infrared images efficiently, an asymmetric residual block structure is proposed to effectively reduce the number of parameters and improve the performance of the network. Finally, to solve the slight misalignment problem in the pre-processing stage, contextual loss and perceptual loss are introduced to improve the visual performance. Experiments show that our method achieves superior results both in reconstruction effect and practical value for single infrared image super-resolution in real scenarios.

8.
Light Sci Appl ; 12(1): 259, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37899419

ABSTRACT

The conjugated mode of bound states in a continuum is integrated as a narrowband wavelength extraction unit. A low-cost and easy-to-prepare strategy, using solution-processable semiconductors, has been demonstrated to form a new platform for on-chip spectral analysis.

9.
Small Methods ; 7(11): e2300479, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37653642

ABSTRACT

The extensive applications of spectrum analysis across various fields have rendered the traditional desktop spectrometers unable to meet the market demand for portability and instantaneity. Reducing the size of spectrometers has become a topic of interest. Based on this trend, a novel type of computational spectrometer is developed and has been widely studied owing to its unique features. Such spectrometers do not need to integrate complex mechanical or optical structures, and most of them can achieve spectrum analysis by the properties of the material itself combines with the reconstruction algorithm. Impressively, a single-detector computational spectrometer has recently been successfully realized based on in situ modulation of material properties. This not only enables the further miniaturization of the device, but also means that the footprint-resolution limitation which has always existed in the field of hyperspectral imaging has been broken, opening a new era of image analysis. This review summarizes the classifications and principles of various spectrometers, compares the spectrum resolution performances of different types of spectrometers, and highlights the progress of computational spectrometers, especially the revolutionary single-detector spectrometer. It is expected that this review will provide a positive impact on expanding the boundary of spectrum analysis and move hyperspectral imaging forward.

10.
Sensors (Basel) ; 23(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37430501

ABSTRACT

For the existing visual-inertial SLAM algorithm, when the robot is moving at a constant speed or purely rotating and encounters scenes with insufficient visual features, problems of low accuracy and poor robustness arise. Aiming to solve the problems of low accuracy and robustness of the visual inertial SLAM algorithm, a tightly coupled vision-IMU-2D lidar odometry (VILO) algorithm is proposed. Firstly, low-cost 2D lidar observations and visual-inertial observations are fused in a tightly coupled manner. Secondly, the low-cost 2D lidar odometry model is used to derive the Jacobian matrix of the lidar residual with respect to the state variable to be estimated, and the residual constraint equation of the vision-IMU-2D lidar is constructed. Thirdly, the nonlinear solution method is used to obtain the optimal robot pose, which solves the problem of how to fuse 2D lidar observations with visual-inertial information in a tightly coupled manner. The results show that the algorithm still has reliable pose-estimation accuracy and robustness in many special environments, and the position error and yaw angle error are greatly reduced. Our research improves the accuracy and robustness of the multi-sensor fusion SLAM algorithm.

11.
J Med Virol ; 95(4): e28735, 2023 04.
Article in English | MEDLINE | ID: mdl-37185855

ABSTRACT

Data on the safety of inactivated COVID-19 vaccines in pregnant women is limited and monitoring pregnancy outcomes is required. We aimed to examine whether vaccination with inactivated COVID-19 vaccines before conception was associated with pregnancy complications or adverse birth outcomes. We conducted a birth cohort study in Shanghai, China. A total of 7000 healthy pregnant women were enrolled, of whom 5848 were followed up through delivery. Vaccine administration information was obtained from electronic vaccination records. Relative risks (RRs) of gestational diabetes mellitus (GDM), hypertensive disorders in pregnancy (HDP), intrahepatic cholestasis of pregnancy (ICP), preterm birth (PTB), low birth weight (LBW), and macrosomia associated with COVID-19 vaccination were estimated by multivariable-adjusted log-binomial analysis. After exclusion, 5457 participants were included in the final analysis, of whom 2668 (48.9%) received at least two doses of an inactivated vaccine before conception. Compared with unvaccinated women, there was no significant increase in the risks of GDM (RR = 0.80, 95% confidence interval [CI], 0.69, 0.93), HDP (RR = 0.88, 95% CI, 0.70, 1.11), or ICP (RR = 1.61, 95% CI, 0.95, 2.72) in vaccinated women. Similarly, vaccination was not significantly associated with any increased risks of PTB (RR = 0.84, 95% CI, 0.67, 1.04), LBW (RR = 0.85, 95% CI, 0.66, 1.11), or macrosomia (RR = 1.10, 95% CI, 0.86, 1.42). The observed associations remained in all sensitivity analyses. Our findings suggested that vaccination with inactivated COVID-19 vaccines was not significantly associated with an increased risk of pregnancy complications or adverse birth outcomes.


Subject(s)
COVID-19 , Pregnancy Complications , Premature Birth , Pregnancy , Infant, Newborn , Female , Humans , Cohort Studies , COVID-19 Vaccines/adverse effects , Pregnant Women , Fetal Macrosomia , Premature Birth/epidemiology , East Asian People , China/epidemiology , COVID-19/prevention & control , Pregnancy Outcome
12.
J Environ Manage ; 339: 117795, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37071951

ABSTRACT

Fiscal transfer payments (TRANS) are the institutional supplement of Chinese-style fiscal decentralization, which is of great significance to economic development. However, the relationship between TRANS and energy conservation and emission reduction (ECER) remains to be further discussed. Using panel data of 30 provinces in China from 2003 to 2020, this study empirically examines the impact of TRANS on energy-environmental performance (EEP) from the perspectives of influence mechanism, regional heterogeneity and nonlinearity. The results show that the influence of TRANS on ECER presents an obvious U-shaped relationship, and this influence has regional heterogeneity. At the same time, the investment-driven effect, infrastructure effect and industrial structure effect are important channels through which TRANS affect ECER. The partially linear functional coefficient models show that TRANS have different effects in different development stages. With the continuous improvement of economic level and urbanization level, the promotion effect of TRANS on ECER is more and more obvious. These results indicate that the government should increase fiscal investment in ECER, and pay attention to the development stage of different regions.


Subject(s)
Government , Urbanization , China , Economic Development , Investments , Politics
13.
Appl Environ Microbiol ; 89(3): e0006623, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36840592

ABSTRACT

Lactococcin A (LcnA), a class IId bacteriocin, induces membrane leakage and cell death by specifically binding to the membrane receptor-mannose phosphotransferase system (man-PTS), as is the case for pediocin-like (class IIa) bacteriocins. The cognate immunity protein of bacteriocins, which protects the producer cell from its own bacteriocin, recognizes and binds to the bacteriocin-man-PTS complex, consequently blocking membrane leakage. We previously deciphered the mode of action and immunity of class IIa bacteriocins. Here, we determined the structure of the ternary complex of LcnA, LciA (i.e., the immunity protein), and its receptor, i.e., the man-PTS of Lactococcus lactis (ll-man-PTS). An external loop on the membrane-located component IIC of ll-man-PTS was found to prevent specific binding of the N-terminal region of LcnA to the site recognized by pediocin-like bacteriocins. Thus, the N-terminal ß-sheet region of LcnA recognized an adjacent site on the extracellular side of ll-man-PTS, with the LcnA C-terminal hydrophobic helix penetrating into the membrane. The cytoplasmic cleft formed within the man-PTS Core and Vmotif domains induced by embedded LcnA from the periplasmic side is adopted by the appropriate angle between helices H3 and H4 of the N terminus of LciA. The flexible C terminus of LciA then blocks membrane leakage. To summarize, our findings reveal the molecular mechanisms of action and immunity of LcnA and LciA, laying a foundation for further design of class IId bacteriocins. IMPORTANCE Class IId (lactococcin-like) bacteriocins and class IIa (pediocin-like) bacteriocins share a few similarities: (i) both induce membrane leakage and cell death by specifically binding the mannose phosphotransferase system (man-PTS) on their target cells, and (ii) cognate immunity proteins recognize and bind to the bacteriocin-man-PTS complex to block membrane leakage. However, class IId bacteriocins lack the "pediocin box" motif, which is typical of class IIa bacteriocins, and basically target only lactococcal cells; in contrast, class IIa bacteriocins target diverse bacterial cells, but not lactococcal cells. We previously solved the structure of class IIa bacteriocin-receptor-immunity ternary complex from Lactobacillus sakei. Here, we determined the structure of the ternary complex of class IId bacteriocin LcnA, its cognate immunity protein LciA, and its receptor, the man-PTS of Lactococcus lactis. By comparing the interactions between man-PTS and class IIa and class IId bacteriocins, this study affords some clues to better understand the specificity of bacteriocins targeting the mannose phosphotransferase system.


Subject(s)
Bacteriocins , Lactococcus lactis , Pediocins/metabolism , Mannose/metabolism , Bacteriocins/metabolism , Lactococcus lactis/metabolism , Phosphotransferases/metabolism
14.
Org Biomol Chem ; 21(9): 1883-1887, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36786673

ABSTRACT

An efficient electrochemical trifluoromethylation of coumarins using CF3SO2NHNHBoc as the source of the trifluoromethyl group was developed. Under catalyst-free and external oxidant-free electrolysis conditions, a range of 3-trifluoromethyl coumarins were obtained in moderate to good yields. The method could be easily scaled up with moderate efficiency.

15.
J Colloid Interface Sci ; 634: 450-459, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36542974

ABSTRACT

In the biological environment, mineral crystals exquisitely controlled by biomacromolecules often show intricate hierarchical structures and superior mechanical properties. Among these biominerals, spicules, hybrid silica/protein superstructures serving as skeletal elements in demosponges, represent an excellent example for motivating the synthesis of silica materials. Herein, by designing sequence-defined peptoids containing side chains with a strong binding to silica, we demonstrated that self-assembly of these peptoids into fiber structures enables the mimicking of both biocatalytic and templating functions of silicatein filaments for the formation of silica fibers at near-neutral pH and ambient temperature. We further showed that the presence of amino groups is significant for the nucleation of silica on self-assembled peptoid nanofibers. Molecular dynamics simulation further confirmed that having silica-binding of amino side chains is critical for self-assembled peptoid fibers in triggering silica formation. We demonstrated that tuning inter-peptoid interactions by varying carboxyl and amino side chains significantly influences the assembly kinetics and final morphologies of peptoid assemblies as scaffolds for directing silica mineralization to form silica spheres, fibers, and sheets. The formation of silica shell on peptoid fibers increased the mechanical property of peptoid hydrogel materials by nearly 1000-fold, highlighting the great potential of using silicification to enhance the mechanical property of hydrogel materials for applications including tissue engineering. Since peptoids are highly robust and programmable, we expect that self-assembly of peptoids containing solid-binding side chains into hierarchical materials opens new opportunities in the design and synthesis of highly tunable scaffolds that direct the formation of composite nanomaterials.


Subject(s)
Nanostructures , Peptoids , Peptoids/chemistry , Hydrogels , Silicon Dioxide
17.
J Med Virol ; 95(1): e28245, 2023 01.
Article in English | MEDLINE | ID: mdl-36262113

ABSTRACT

Despite the high vaccination coverage, potential COVID-19 vaccine-induced adverse effects, especially in pregnant women, have not been fully characterized. We examined the association between COVID-19 vaccination before conception and maternal thyroid function during early pregnancy. We conducted a retrospective cohort study in Shanghai, China. A total of 6979 pregnant women were included. Vaccine administration was obtained from electronic vaccination records. Serum levels of thyroid hormone were measured by fluorescence and chemiluminescence immunoassays. Among the 6979 included pregnant women, 3470 (49.7%) received at least two doses of an inactivated vaccine. COVID-19 vaccination had a statistically significant association with both maternal serum levels of free thyroxine (FT4) and thyroid stimulating hormone (TSH). Compared with unvaccinated pregnant women, the mean FT4 levels were lower in pregnant women who had been vaccinated within 3 months before the date of conception by 0.27 pmol/L (ß = -0.27, 95% confidence interval [CI], -0.42, -0.12), and the mean TSH levels were higher by 0.08 mIU/L (ß = 0.08, 95% CI, 0.00, 0.15). However, when the interval from vaccination to conception was prolonged to more than 3 months, COVID-19 vaccination was not associated with serum FT4 or TSH levels. Moreover, we found that COVID-19 vaccination did not significantly associate with maternal hypothyroidism. Our study suggested that vaccination with inactivated COVID-19 vaccines before conception might result in a small change in maternal thyroid function, but this did not reach clinically significant levels.


Subject(s)
COVID-19 Vaccines , COVID-19 , Thyroid Gland , Female , Humans , Pregnancy , China/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Retrospective Studies , Thyroid Function Tests , Thyroid Hormones , Thyrotropin
18.
Front Psychol ; 13: 1027427, 2022.
Article in English | MEDLINE | ID: mdl-36506953

ABSTRACT

Effective grassroots governance is the foundation for the stability of state power, but the "invalid busyness" behavior of a few grassroots cadres has seriously deteriorated the local political ecology. In order to gain a deeper understanding of the mechanism of "invalid busyness" behavior of grassroots cadres, this paper, following the analysis of typological research and combined with publicly available data, classifies the "invalid busyness" behavior of grassroots cadres into eight types, including hedging and self-preservation, drifting with the stream, patchwork response, conforming old rulers, replacing targets, blame avoidance, trace doctrine, and self-waiver. It is found that the "invalid busyness" behavior of grassroots cadres is shaped by the risk society paradox, local management paradox, incentive intensity paradox and technical governance paradox, and the "invalid busyness" behavior of grassroots cadres needs to be corrected from the four-dimensional logic of incentive, restraint, deep care, and strict control. This study systematically describes the manifestation, causes and correction mechanism of the "invalid busyness" behavior of grassroots cadres, which enriches and expands the theoretical research on the performance behavior of grassroots cadres. Systematic review registration: https://osf.io/h5wgj.

19.
Cells ; 11(22)2022 11 16.
Article in English | MEDLINE | ID: mdl-36429065

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease spectrum associated with insulin resistance (IR), from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). O-GlcNAcylation is a posttranslational modification, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Abnormal O-GlcNAcylation plays a key role in IR, fat deposition, inflammatory injury, fibrosis, and tumorigenesis. However, the specific mechanisms and clinical treatments of O-GlcNAcylation and NAFLD are yet to be elucidated. The modification contributes to understanding the pathogenesis and development of NAFLD, thus clarifying the protective effect of O-GlcNAcylation inhibition on liver injury. In this review, the crucial role of O-GlcNAcylation in NAFLD (from NAFL to HCC) is discussed, and the effect of therapeutics on O-GlcNAcylation and its potential mechanisms on NAFLD have been highlighted. These inferences present novel insights into the pathogenesis and treatments of NAFLD.


Subject(s)
Carcinoma, Hepatocellular , Insulin Resistance , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Carcinoma, Hepatocellular/complications , Liver Neoplasms/complications , Protein Processing, Post-Translational
20.
Chem Rev ; 122(24): 17397-17478, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36260695

ABSTRACT

Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.


Subject(s)
Peptides , Macromolecular Substances/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...