Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Sci Total Environ ; : 173143, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735336

ABSTRACT

In a warming climate, high temperature stress greatly threatens crop yields. Maize is critical to food security, but frequent extreme heat events coincide temporally and spatially with the period of kernel number determination (e.g., flowering stage), greatly limiting maize yields. In this context, how to increase or at least maintain maize yield has become more important. Nitrogen fertilizer (N) is widely used to improve maize yields, but its effect in heat stress is unclear. For this, we collected 1536 pairs of comparisons from 113 studies concerning N conducted in the past 20 years over China. We classified the data into two groups - without high temperature stress (NHT) and with high temperature stress during the critical period for maize kernel number determination (HT) - based on the national meteorological data. We comprehensively evaluated N effects on grain yield under HT and NHT using meta-analysis. The effect of N on maize yield became significantly smaller in HT than that in NHT. In NHT, soil characteristics, crop management practices, and climatic conditions all significantly affected N effects on maize yield, but in HT, only a few factors such as soil organic matter and mean annual precipitation significantly affected N effects. Hence, it is difficult to improve N effect by improving soil characteristics and crop management when meeting with high temperature stress during flowering. On average, N effect increased with increased N input, but there were respective N input thresholds in NHT and HT, beyond which N effects on maize yield remained stable. According to the thresholds, it is speculated that moderately reducing N input (~20 %) likely increased high temperature tolerance of maize during flowering. These findings have important implications for the optimization of N management under a warming climate.

2.
J Hazard Mater ; 471: 134315, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678703

ABSTRACT

Mosaic loss of chromosome Y (mLOY) is the most common somatic alteration as men aging and may reflect genome instability. PM exposure is a major health concern worldwide, but its effects with genetic factors on mLOY has never been investigated. Here we explored the associations of PM2.5 and PM10 exposure with mLOY of 10,158 males measured via signal intensity of 2186 probes in male-specific chromosome-Y region from Illumina array data. The interactive and joint effects of PM2.5 and PM10 with genetic factors and smoking on mLOY were further evaluated. Compared with the lowest tertiles of PM2.5 levels in each exposure window, the highest tertiles in the same day, 7-, 14-, 21-, and 28-day showed a 0.005, 0.006, 0.007, 0.007, and 0.006 decrease in mLRR-Y, respectively (all P < 0.05), with adjustment for age, BMI, smoking pack-years, alcohol drinking status, physical activity, education levels, season of blood draw, and experimental batch. Such adverse effects were also observed in PM10-mLOY associations. Moreover, the unweighted and weighted PRS presented significant negative associations with mLRR-Y (both P < 0.001). Participants with high PRS and high PM2.5 or PM10 exposure in the 28-day separately showed a 0.018 or 0.019 lower mLRR-Y level [ß (95 %CI) = -0.018 (-0.023, -0.012) and - 0.019 (-0.025, -0.014), respectively, both P < 0.001], when compared to those with low PRS and low PM2.5 or PM10 exposure. We also observed joint effects of PM with smoking on exacerbated mLOY. This large study is the first to elucidate the impacts of PM2.5 exposure on mLOY, and provides key evidence regarding the interactive and joint effects of PM with genetic factors on mLOY, which may promote understanding of mLOY development, further modifying and increasing healthy aging in males.


Subject(s)
Chromosomes, Human, Y , Particulate Matter , Male , Humans , Particulate Matter/toxicity , Middle Aged , Aged , Cohort Studies , Mosaicism , Air Pollutants/toxicity , China , Environmental Exposure/adverse effects , Smoking , Multifactorial Inheritance , Air Pollution/adverse effects , Risk Factors , Genetic Risk Score
3.
Sci Total Environ ; 927: 172366, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614325

ABSTRACT

BACKGROUND: Concerns remain about the neurotoxic properties of the ubiquitous organophosphate esters (OPEs), the replacement of the toxicant polybrominated diphenyl ethers. OBJECTIVES: We examined the associations of prenatal exposure to OPEs and their mixtures with early-life neurodevelopment trajectories. METHODS: Totally 1276 mother-child pairs were recruited from the Shanghai Maternal-Child Pairs Cohort. A high-performance liquid chromatography-triple quadrupole mass spectrometer was used to measure the levels of 7 OPEs in cord serum. Ages and Stages Questionnaires was used to examine children's neuropsychological development at 2, 6, 12, and 24 months of age. Group-based trajectory models were applied to derive the neurodevelopmental trajectories. Multiple linear regression and logistic regression model were performed to assess the relationships between OPEs exposure and neurodevelopment and trajectories. Mixtures for widely detected OPEs (n = 4) were investigated using quantile-based g-computation. RESULTS: Tributyl phosphate (TBP), tris (2-butoxy ethyl) phosphate (TBEP), tris(1,3-dichloro-2-propyl) phosphate (TDCPP), and 2-ethylhexyl diphenyl phosphate (EHDPP), had detection rates >50 %. TDCPP had the highest median concentration (1.02 µg/L) in cord serum. EHDPP concentrations were negatively associated with scores in most domains at 12 months of age, with effect values (ß) ranging from -1.89 to -0.57. EHDPP could negatively affect the total ASQ (OR = 1.07, 95 % CI: 1, 1.15) and gross-motor (OR = 1.09, 95 % CI: 1.02, 1.17) trajectory in infancy. Joint exposure to OPEs was associated with decreased scores in the total ASQ, gross-motor, fine-motor and problem-solving domain of 12-month-old infants, with ß ranging from -5.93 to -1.25. In addition, the qgcomp models indicated significant positive associations between the concentrations of OPEs mixtures and risks of the persistently low group of the total ASQ, gross-motor and fine-motor development in early childhood. The impact of OPEs was more pronounced in boys. DISCUSSION: Our findings suggested OPEs, especially EHDPP, had a persistently negative effect on neurodevelopment during the first 2 years.


Subject(s)
Child Development , Esters , Organophosphates , Prenatal Exposure Delayed Effects , Humans , Female , China , Organophosphates/toxicity , Infant , Pregnancy , Child Development/drug effects , Maternal Exposure/statistics & numerical data , Male , Environmental Pollutants , Child, Preschool , Cohort Studies , Adult
4.
Sci Rep ; 14(1): 8751, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627577

ABSTRACT

This paper aims to reduce friction pair erosion of the clutch in the case of continuous shift; the dynamic separation process of the friction pair is investigated. The temperature of the friction pair, friction torque, and separation speed in the separation process are taken as the research objects, and the dynamics simulation model and finite element thermal coupling simulation model of the clutch separation process are established. The nonlinear dynamic separation characteristics of the friction pair are investigated by comparing and analyzing the effects of control parameters such as rotational speed difference, damping ratio, and lubricant viscosity on the friction torque, friction pair separation speed, separation gap, and contact stress during the separation process. The gap recovery coefficient is proposed as a response indicator for observing the separation process in response to the inability to observe the nonlinear dynamic motion of the friction pair during the separation process and to measure the end time of the separation. Finally, the clutch was subjected to a separation test. The results show that the proposed gap recovery coefficient accurately describes the separation process. The simulation model can simulate the clutch's separation and predict the trend of separation parameters.

5.
Clin Nutr ; 43(6): 1363-1371, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38678821

ABSTRACT

BACKGROUND: The associations between ultra-processed food (UPF) consumption, genetic susceptibility, and the risk of osteoarthritis (OA) remain unknown. This study was to examine the effect of UPF consumption, genetic susceptibility, and their interactions on hip/knee OA. METHODS: Cohort analyses included 163,987 participants from the UK Biobank. Participants' UPF consumption was derived from their 24-h dietary recall using a questionnaire. Genetic risk scores (GRSs) of 70 and 83 single nucleotide polymorphisms (SNPs) for hip and knee OA were constructed. FINDINGS: After 1,461,447 person-years of follow-up, 11,540 patients developed OA. After adjustments, compared to participants in the low quartile of UPF consumption, those in the high quartile had a 10 % (hazard ratio [HR], 1.10; 95% confidence interval [CI], 1.03-1.18) increased risk of knee OA. No significant association was found between UPF consumption and hip OA. Replacing 20% of UPF diet weight with an equivalent proportion of unprocessed or minimally processed food caused a 6% (HR, 0.94; 95% CI, 0.89-0.98) decreased risk of knee OA, respectively. A significant interaction was found between UPF consumption, genetic predisposition, and the risk of knee OA (P = 0.01). Participants with lower OA-GRS scores experienced higher knee OA risks due to UPF consumption. INTERPRETATION: UPF consumption was associated with a higher risk of knee OA but not hip OA, particularly in those with lower genetic susceptibility. These results highlight the importance of reducing UPF consumption to prevent knee OA.

6.
Nat Commun ; 15(1): 3619, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684692

ABSTRACT

The nitrate (NO3-) electroreduction into ammonia (NH3) represents a promising approach for sustainable NH3 synthesis. However, the variation of adsorption configurations renders great difficulties in the simultaneous optimization of binding energy for the intermediates. Though the extensively reported Cu-based electrocatalysts benefit NO3- adsorption, one of the key issues lies in the accumulation of nitrite (NO2-) due to its weak adsorption, resulting in the rapid deactivation of catalysts and sluggish kinetics of subsequent hydrogenation steps. Here we report a tandem electrocatalyst by combining Cu single atoms catalysts with adjacent Co3O4 nanosheets to boost the electroreduction of NO3- to NH3. The obtained tandem catalyst exhibits a yield rate for NH3 of 114.0 mg NH 3 h-1 cm-2, which exceeds the previous values for the reported Cu-based catalysts. Mechanism investigations unveil that the combination of Co3O4 regulates the adsorption configuration of NO2- and strengthens the binding with NO2-, thus accelerating the electroreduction of NO3- to NH3.

7.
Child Abuse Negl ; 151: 106715, 2024 May.
Article in English | MEDLINE | ID: mdl-38461707

ABSTRACT

BACKGROUND: Childhood maltreatment is a common problem that can have lasting effects on the physical and mental health of adolescents who have experienced it, including sleep quality. OBJECTIVE: This study will investigate the relationship between childhood maltreatment and sleep quality in adolescents using a weekly diary method. PARTICIPANTS AND SETTING: In this study, students from a middle school in central China were recruited as research subjects, and a total of 11 classes with 470 students were investigated. METHODS: In order to fill in the gaps of previous studies, a weekly diary method was used to collect data. Subjects were required to complete three scales once a week for seven consecutive weeks, including the Childhood Trauma Questionnaire (CTQ), the Multidimensional Scale of Perceived Social Support (MSPSS), and the Pittsburgh Sleep Quality Index scale (PSQI). RESULTS: Findings suggest that childhood maltreatment has a negative impact on adolescent's sleep quality at the weekly level (γ01c = -0.07, t = -5.71, p < .001) . The negative effect of childhood maltreatment on sleep quality was significantly reduced with the addition of perceived social support (γ01c' = -0.03, t = -2.83, p < .01). Notably, support from friends (γ01a*γ02b = -0.01) and significant others (γ01a*γ02b = -0.02) also played an important mediating role in child maltreatment and adolescent sleep quality, but family support remained the most important support in adolescents (γ01a*γ02b = -0.04). CONCLUSIONS: The present study has confirmed the negative correlation between childhood maltreatment and sleep quality in adolescents. Furthermore, it has clarified the mechanism of perceived social support and the separate mediating roles of perceived family support, perceived friend support, and perceived significant other support.


Subject(s)
Child Abuse , Friends , Psychological Tests , Self Report , Child , Humans , Adolescent , Sleep Quality , Social Support , Child Abuse/psychology
8.
Acta Trop ; 254: 107182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479469

ABSTRACT

Organoids have emerged as a powerful tool for understanding the biology of the respiratory, digestive, nervous as well as urinary system, investigating infections, and developing new therapies. This article reviews recent progress in the development of organoid and advancements in virus research. The potential applications of these models in studying virul infections, pathogenesis, and antiviral drug discovery are discussed.


Subject(s)
Organoids , Virus Diseases , Organoids/virology , Humans , Animals , Virus Diseases/virology , Virus Diseases/drug therapy , Viruses/drug effects , Viruses/pathogenicity , Viruses/growth & development , Viruses/classification , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Discovery/methods
9.
Comp Immunol Microbiol Infect Dis ; 107: 102157, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484424

ABSTRACT

Trichomonas gallinae, a protozoan parasite causing avian trichomonosis, exhibits a widespread global prevalence. It primarily affects the upper digestive tract of birds and has resulted in significant ecological problems worldwide. This study aimed to investigate the prevalence and genotypes of T. gallinae in Anhui Province, China. A total of 1612 oropharyngeal swab samples were collected from pigeon farms in Anhui Province to determine the prevalence of T. gallinae infection. The results revealed 565 (35.1%) positive samples of T. gallinae. Significant differences in infection rates were observed among different regions and age groups. Furthermore, the ITS1/5.8 S/ITS2 region was amplified, sequenced, and subjected to phylogenetic analysis. Genotypes A and B of T. gallinae were identified, and genotype B was the dominant genotype in Anhui Province. This is the first report on the prevalence and molecular characterization of T. gallinae in Anhui Province, China. Additionally, we integrated reports on the prevalence and genotype of T. gallinae in relevant provinces in China.


Subject(s)
Bird Diseases , Trichomonas , Animals , Trichomonas/genetics , Columbidae/parasitology , Prevalence , Phylogeny , Bird Diseases/epidemiology , Bird Diseases/parasitology , China/epidemiology
10.
BMC Med ; 22(1): 101, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448943

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) and metabolic-associated fatty liver disease (MAFLD) shares common pathophysiological mechanisms with type 2 diabetes, making them significant risk factors for type 2 diabetes. The present study aimed to assess the epidemiological feature of type 2 diabetes in patients with NAFLD or MAFLD at global levels. METHODS: Published studies were searched for terms that included type 2 diabetes, and NAFLD or MAFLD using PubMed, EMBASE, MEDLINE, and Web of Science databases from their inception to December 2022. The pooled global and regional prevalence and incidence density of type 2 diabetes in patients with NAFLD or MAFLD were evaluated using random-effects meta-analysis. Potential sources of heterogeneity were investigated using stratified meta-analysis and meta-regression. RESULTS: A total of 395 studies (6,878,568 participants with NAFLD; 1,172,637 participants with MAFLD) from 40 countries or areas were included in the meta-analysis. The pooled prevalence of type 2 diabetes among NAFLD or MAFLD patients was 28.3% (95% confidence interval 25.2-31.6%) and 26.2% (23.9-28.6%) globally. The incidence density of type 2 diabetes in NAFLD or MAFLD patients was 24.6 per 1000-person year (20.7 to 29.2) and 26.9 per 1000-person year (7.3 to 44.4), respectively. CONCLUSIONS: The present study describes the global prevalence and incidence of type 2 diabetes in patients with NAFLD or MAFLD. The study findings serve as a valuable resource to assess the global clinical and economic impact of type 2 diabetes in patients with NAFLD or MAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Risk Factors , Databases, Factual , Patients
11.
J Hazard Mater ; 469: 133920, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38457972

ABSTRACT

Studies on the role of the gut microbiota in the associations between per- and polyfluoroalkyl substance (PFAS) exposure and adverse neurodevelopment are limited. Umbilical cord serum and faeces samples were collected from children, and the Strengths and Difficulties Questionnaire (SDQ) was conducted. Generalized linear models, linear mixed-effects models, multivariate analysis by linear models and microbiome regression-based kernel association tests were used to evaluate the associations among PFAS exposure, the gut microbiota, and neurobehavioural development. Perfluorohexane sulfonic acid (PFHxS) exposure was associated with increased scores for conduct problems and externalizing problems, as well as altered gut microbiota alpha and beta diversity. PFHxS concentrations were associated with higher relative abundances of Enterococcus spp. but lower relative abundances of several short-chain fatty acid-producing genera (e.g., Ruminococcus gauvreauii group spp.). PFHxS exposure was also associated with increased oxidative phosphorylation. Alpha and beta diversity were found significantly associated with conduct problems and externalizing problems. Ruminococcus gauvreauii group spp. abundance was positively correlated with prosocial behavior scores. Increased alpha diversity played a mediating role in the associations of PFHxS exposure with conduct problems. Our results suggest that the gut microbiota might play an important role in PFAS neurotoxicity, which may have implications for PFAS control.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Gastrointestinal Microbiome , Sulfonic Acids , Child , Female , Pregnancy , Humans , Dysbiosis/chemically induced , Ruminococcus , Fluorocarbons/toxicity , Environmental Pollutants/toxicity
12.
Hortic Res ; 11(2): uhad273, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38333729

ABSTRACT

In the era of rapid advancements in high-throughput omics technologies, the visualization of diverse data types with varying orders of magnitude presents a pressing challenge. To bridge this gap, we introduce DataColor, an all-encompassing software solution meticulously crafted to address this challenge. Our aim is to empower users with the ability to handle a wide array of data types through an assortment of tools, while simultaneously streamlining parameter selection for rapid insights and detailed enhancements. DataColor stands as a robust toolkit, encompassing 23 distinct tools coupled with over 600 parameters. The defining characteristic of this toolkit is its adept utilization of the color spectrum, allowing for the representation of data spanning diverse types and magnitudes. Through the integration of advanced algorithms encompassing data clustering, normalization, squarified layouts, and customizable parameters, DataColor unveils an abundance of insights that lay hidden within the intricate relationships embedded in the data. Whether you find yourself navigating the analysis of expansive datasets or embarking on the quest to visualize intricate patterns, DataColor stands as the comprehensive and potent solution. We extend the availability of DataColor to all users at no cost, accessible through the following link: https://github.com/frankgenome/DataColor.

13.
Environ Res ; : 118539, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38401684

ABSTRACT

The relationship of exposure to benzo [a]pyrene (BaP) with lung cancer risk has been firmly established, but whether this association could be modified by other environmental or genetic factors remains to be explored. To investigate whether and how zinc (Zn) and genetic predisposition modify the association between BaP and lung cancer, we performed a case-cohort study with a 5.4-years median follow-up duration, comprising a representative subcohort of 1399 participants and 359 incident lung cancer. The baseline concentrations of benzo [a]pyrene diol epoxide-albumin adduct (BPDE-Alb) and Zn were quantified. We also genotyped the participants and computed the polygenic risk score (PRS) for lung cancer. Our findings indicated that elevated BPDE-Alb and PRS were linked to increased lung cancer risk, with the HR (95%CI) of 1.54 (1.36, 1.74) per SD increment in ln-transformed BPDE-Alb and 1.27 (1.14, 1.41) per SD increment in PRS, but high plasma Zn level was linked to a lower lung cancer risk [HR (95%CI) per SD increment in ln-transformed Zn = 0.77 (0.66, 0.91)]. There was evidence of effect modification by Zn on BaP-lung cancer association (P for multiplicative interaction = 0.008). As Zn concentrations increased from the lowest to highest tertile, the lung cancer risk per SD increment in ln-transformed BPDE-Alb decreased from 2.07 (1.48, 2.89) to 1.45 (1.03, 2.05) to 1.33 (0.90, 1.95). Additionally, we observed a significant synergistic interaction of BPDE-Alb and PRS [RERI (95%CI) = 0.85 (0.03, 1.67)], with 42% of the incident lung cancer cases among individuals with high BPDE-Alb and high PRS attributable to their additive effect [AP (95%CI) = 0.42 (0.14, 0.69)]. This study provided the first prospective epidemiological evidence that Zn has protective effect against BaP-induced lung tumorigenesis, whereas high genetic risk can enhance the harmful effect of BaP. These findings may provide novel insight into the environment-environment and environment-gene interaction underlying lung cancer development, which may help to develop prevention and intervention strategies to manage BaP-induced lung cancer.

14.
Biomaterials ; 306: 122479, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38295649

ABSTRACT

Due to glioblastoma (GBM) being the most intractable brain tumor, the continuous improvement of effective treatment methods is indispensable. The combination of siRNA-based gene therapy and chemotherapy for GBM treatment has now manifested great promise. Herein, Gint4.T-siHDGF chimera-capped mesoporous silica nanoparticles (MSN) encapsulating chemotherapy drug temozolomide (TMZ), termed as TMSN@siHDGF-Gint4.T, is developed to co-deliver gene-drug siHDGF and TMZ for synergistic GBM therapy. TMSN@siHDGF-Gint4.T possesses spherical nucleic acid-like architecture that can improve the enzyme resistance of siHDGF and increase the blood-brain barrier (BBB) permeability of the nanovehicle. The aptamer Gint4.T of chimera endows the nanovehicle with GBM cell-specific binding ability. When administered systemically, TMSN@siHDGF-Gint4.T can traverse BBB and enter GBM cells. In the acidic lysosome environment, the cleavage of benzoic-imine bond on MSN surface leads to an initial rapid release of chimera, followed by a slow release of TMZ encapsulated in MSN. The sequential release of siHDGF and TMZ first allows siHDGF to exert its gene-silencing effect, and the downregulation of HDGF expression further enhances the cytotoxicity of TMZ. In vivo experimental results have demonstrated that TMSN@siHDGF-Gint4.T significantly inhibits tumor growth and extends the survival time of GBM-bearing mice. Thus, the as-developed TMSN@siHDGF-Gint4.T affords a potential approach for the combination treatment of GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Nanoparticles , Nitriles , Animals , Mice , Temozolomide/pharmacology , Glioblastoma/metabolism , Xenograft Model Antitumor Assays , Nanoparticles/chemistry , Brain Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm
15.
Quant Imaging Med Surg ; 14(1): 698-710, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223075

ABSTRACT

Background: Virtual monochromatic image (VMI) combined with orthopedic metal artifact reduction algorithms (VMI + O-MAR) can effectively reduce artifacts caused by metal implants of different types. Nevertheless, so far, no study has systematically evaluated the efficacy of VMI + O-MAR in reducing various types of metal artifacts induced by 125I seeds. The aim of this study was to assess the effectiveness of combining spectral computed tomography (CT) images with O-MAR in reducing metal artifacts and improving the image quality affected by artifacts in patients after 125I radioactive seeds implantation (RSI). Methods: A total of 45 patients who underwent dual-layer detector spectral CT (DLCT; IQon, Philips Healthcare) scanning of mediastinal and hepatic tumors after 125I RSI were retrospectively included. Spectral data were reconstructed into conventional image (CI), VMI, CI combined with O-MAR (CI + O-MAR), and VMI + O-MAR to evaluate the de-artifact effect and image quality improvement. Objective indicators included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and artifact index (AI) of lesions affected by artifacts. Subjective indicators included assessment of overcorrected artifacts and new artifacts, different morphology of artifacts, and overall image quality. Results: In artifact-affected lesion areas, SNR and CNR in the CI/VMI + O-MAR groups were better than those in CI groups (all P values <0.05). The AI showed a downward trend as VMI keV increased (all P values <0.001). The AI values of the CI/VMI (50-150 keV) group were all higher than the groups of CI/VMI + O-MAR (50-150 keV) (P<0.001). Overcorrection artifacts and new artifacts were concentrated in the VMI50/70 keV groups. In the evaluation of artifact morphology, as the VMI keV increased, the number of near-field banding artifacts in hyperdense artifacts gradually decreased, whereas the number of minimal or no artifacts increased, and the total number of hyperdense artifacts were decreased. The diagnostic and image quality scores of hyperdense artifacts were higher than those of hypodense artifacts as VMI keV increased. Conclusions: High VMI level combined with O-MAR substantially improve objective and subjective image quality, lesion display ability, and diagnostic confidence of CT follow-up after 125I RSI, especially at the VMI + O-MAR 150 keV level.

16.
Foods ; 13(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38254508

ABSTRACT

Microwave intermittent drying was carried out on newly harvested corn kernels to study the effects of different microwave intermittent powers (900 W, 1800 W, 2700 W, and 3600 W) on the structural and functional properties of zein in corn kernels. The results showed that microwave drying could increase the thermal stability of zein in corn kernels. The solubility, emulsification activity index, and surface hydrophobicity increased under 1800 W drying power, which was due to the unfolding of the molecular structure caused by the increase in the content of irregular structure and the decrease in the value of particle size. At a drying power of 2700 W, there was a significant increase in grain size values and ß-sheet structure. This proves that at this time, the corn proteins in the kernels were subjected to the thermal effect generated by the higher microwave power, which simultaneously caused cross-linking and aggregation within the proteins to form molecular aggregates. The solubility, surface hydrophobicity, and other functional properties were reduced, while the emulsification stability was enhanced by the aggregates. The results of the study can provide a reference for the in-depth study of intermittent corn microwave drying on a wide range of applications of zein in corn kernels.

17.
Ecotoxicol Environ Saf ; 271: 115980, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38262095

ABSTRACT

Epidemiologic studies have reported the positive relationship of benzo[a]pyrene (BaP) exposure with the risk of lung cancer. However, the mechanisms underlying the relationship is still unclear. Plasma microRNA (miRNA) is a typical epigenetic biomarker that was linked to environment exposure and lung cancer development. We aimed to reveal the mediation effect of plasma miRNAs on BaP-related lung cancer. We designed a lung cancer case-control study including 136 lung cancer patients and 136 controls, and measured the adducts of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) and sequenced miRNA profiles in plasma. The relationships between BPDE-Alb adducts, normalized miRNA levels and the risk of lung cancer were assessed by linear regression models. The mediation effects of miRNAs on BaP-related lung cancer were investigated. A total of 190 plasma miRNAs were significantly related to lung cancer status at Bonferroni adjusted P < 0.05, among which 57 miRNAs showed different levels with |fold change| > 2 between plasma samples before and after tumor resection surgery at Bonferroni adjusted P < 0.05. Especially, among the 57 lung cancer-associated miRNAs, BPDE-Alb adducts were significantly related to miR-17-3p, miR-20a-3p, miR-135a-5p, miR-374a-5p, miR-374b-5p, miR-423-5p and miR-664a-5p, which could in turn mediate a separate 42.2%, 33.0%, 57.5%, 36.4%, 48.8%, 32.5% and 38.2% of the relationship of BPDE-Alb adducts with the risk of lung cancer. Our results provide non-invasion biomarker candidates for lung cancer, and highlight miRNAs dysregulation as a potential intermediate mechanism by which BaP exposure lead to lung tumorigenesis.


Subject(s)
Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Benzo(a)pyrene/toxicity , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Case-Control Studies , Lung , Biomarkers , China
18.
Eur J Med Chem ; 267: 116176, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38286094

ABSTRACT

A series of NSAIDs hybrid molecules were synthesized and characterized, and their ability to inhibit NO release in LPS-induced RAW264.7 macrophages was evaluated. Most of the compounds showed significant anti-inflammatory activity in vitro, of which (2E,6Z,9Z,12Z,15Z)-1,1,1-trifluorohenicosa-2,6,9,12,15-pentaen-2-yl 2-(4-benzoylphenyl) propanoate (VI-60) was the most optimal (IC50 = 3.85 ± 0.25 µΜ) and had no cytotoxicity. In addition, VI-60 notably reduced the production of PGE2 in LPS-stimulated RAW264.7 cells compared to ketoprofen. Futhur more, VI-60 significantly inhibited the expression of iNOS, cPLA2, and COX-2 and the phosphorylation of p38 MAPK in LPS-stimulated RAW264.7 cells. The binding of VI-60 to cPLA2 and COX-2 was directly verified by the CETSA technique. In vivo studies illustrated that VI-60 exerted an excellent therapeutic effect on adjuvant-induced arthritis in rats by regulating the balance between Th17 and Treg through inhibiting the p38 MAPK/cPLA2/COX-2/PGE2 pathway. Encouragingly, VI-60 showed a lower ulcerative potential in rats at a dose of 50 mg/kg compared to ketoprofen. In conclusion, the hybrid molecules of NSAIDs and trifluoromethyl enols are promising candidates worthy of further investigation for the treatment of inflammation, pain, and other symptoms in which cPLA2 and COX-2 play a role in their etiology.


Subject(s)
Arthritis, Rheumatoid , Ketoprofen , Rats , Animals , p38 Mitogen-Activated Protein Kinases/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors , Lipopolysaccharides/pharmacology , Arthritis, Rheumatoid/drug therapy , NF-kappa B/metabolism
20.
J Hazard Mater ; 465: 133200, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38113735

ABSTRACT

Humans were exposed to multiple metals, but the impact of metals on DNA methylation-age (DNAm-age), a well-recognized aging measure, remains inconclusive. This study included 2942 participants from the Dongfeng-Tongji cohort. We detected their plasma concentrations of 23 metals and determined their genome-wide DNA methylation using the Illumina Human-MethylationEPIC BeadChip. Five DNAm-age acceleration indexes (DAIs), including HannumAge-Accel, HorvathAge-Accel, PhenoAge-Accel, GrimAge-Accel (residual from regressing corresponding DNAm-age on chronological age) and DNAm-mortality score (DNAm-MS), were separately calculated. We found that each 1-unit increase in ln-transformed copper (Cu) was associated with a separate 1.02-, 0.83- and 0.07-unit increase in PhenoAge-Accel, GrimAge-Accel, and DNAm-MS (all FDR<0.05). Each 1-unit increase in ln-transformed nickel (Ni) was associated with a 0.34-year increase in PhenoAge-Accel, while each 1-unit increase in ln-transformed strontium (Sr) was associated with a 0.05-unit increase in DNAm-MS. The Cu, Ni and Sr showed joint positive effects on above three DAIs. PhenoAge-Accel, GrimAge-Accel, and DNAm-MS mediated a separate 6.5%, 12.3%, 6.0% of the positive association between Cu and all-cause mortality; GrimAge-Accel mediated 14.3% of the inverse association of selenium with all-cause mortality. Our findings revealed the effects of Cu, Ni, Sr and their co-exposure on accelerated aging and highlighted mediation roles of DNAm-age on metal-associated mortality.


Subject(s)
Aging , DNA Methylation , Humans , Cohort Studies , Metals , DNA , Nickel , Strontium , Epigenesis, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...