Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(21): e202401987, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38526053

ABSTRACT

The in-depth understanding of the composition-property-performance relationship of solid electrolyte interphase (SEI) is the basis of developing a reliable SEI to stablize the Zn anode-electrolyte interface, but it remains unclear in rechargeable aqueous zinc ion batteries. Herein, a well-designed electrolyte based on 2 M Zn(CF3SO3)2-0.2 M acrylamide-0.2 M ZnSO4 is proposed. A robust polymer (polyacrylamide)-inorganic (Zn4SO4(OH)6.xH2O) hybrid SEI is in situ constructed on Zn anodes through controllable polymerization of acrylamide and coprecipitation of SO4 2- with Zn2+ and OH-. For the first time, the underlying SEI composition-property-performance relationship is systematically investigated and correlated. The results showed that the polymer-inorganic hybrid SEI, which integrates the high modulus of the inorganic component with the high toughness of the polymer ingredient, can realize high reversibility and long-term interfacial stability, even under ultrahigh areal current density and capacity (30 mA cm-2~30 mAh cm-2). The resultant Zn||NH4V4O10 cell also exhibits excellent cycling stability. This work will provide a guidance for the rational design of SEI layers in rechargeable aqueous zinc ion batteries.

2.
Cell Oncol (Dordr) ; 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520647

ABSTRACT

BACKGROUND: Recent research underscores the pivotal role of immune checkpoints as biomarkers in colorectal cancer (CRC) therapy, highlighting the dynamics of resistance and response to immune checkpoint inhibitors. The impact of epigenetic alterations in CRC, particularly in relation to immune therapy resistance, is not fully understood. METHODS: We integrated a comprehensive dataset encompassing TCGA-COAD, TCGA-READ, and multiple GEO series (GSE14333, GSE37892, GSE41258), along with key epigenetic datasets (TCGA-COAD, TCGA-READ, GSE77718). Hierarchical clustering, based on Euclidean distance and Ward's method, was applied to 330 primary tumor samples to identify distinct clusters. The immune microenvironment was assessed using MCPcounter. Machine learning algorithms were employed to predict DNA methylation patterns and their functional enrichment, in addition to transcriptome expression analysis. Genomic mutation profiles and treatment response assessments were also conducted. RESULTS: Our analysis delineated a specific tumor cluster with CpG Island (CGI) methylation, termed the Demethylated Phenotype (DMP). DMP was associated with metabolic pathways such as oxidative phosphorylation, implicating increased ATP production efficiency in mitochondria, which contributes to tumor aggressiveness. Furthermore, DMP showed activation of the Myc target pathway, known for tumor immune suppression, and exhibited downregulation in key immune-related pathways, suggesting a tumor microenvironment characterized by diminished immunity and increased fibroblast infiltration. Six potential therapeutic agents-lapatinib, RDEA119, WH.4.023, MG.132, PD.0325901, and AZ628-were identified as effective for the DMP subtype. CONCLUSION: This study unveils a novel epigenetic phenotype in CRC linked to resistance against immune checkpoint inhibitors, presenting a significant step toward personalized medicine by suggesting epigenetic classifications as a means to identify ideal candidates for immunotherapy in CRC. Our findings also highlight potential therapeutic agents for the DMP subtype, offering new avenues for tailored CRC treatment strategies.

3.
J Adv Res ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37619932

ABSTRACT

BACKGROUND: Hepatic immune tolerance might contribute to the development of therapeutic resistance to immunotherapy. However, addressing this issue is challenging since the efficacy of immunotherapy in the context of liver metastasis (LM) remains poorly studied. Here, we aimed to establish an LM common immune feature (LMCIF) score to quantify the characteristics of LM immunotolerance across cancer types for assisting clinical disease management. METHODS: Large-scale clinical data were collected to identify the prognosis of LM. Multi-omics datasets of metastatic cancers with LM special immune-related pathways (LMSIPs) from the Molecular Signatures Database (MSigDB)were used to obtain an LMCIF cluster. Based on differential expression genes (DEGs), a novel LMCIF score for the LMCIF cluster was constructed. In addition, multi-omics, and immunohistochemistry (IHC) data from the public and in-house cohorts were used to explore the features of LM, and LMCIF score. RESULTS: Patients with LM had a worse prognosis and significantly lower infiltration of immune cells than patients with metastasis to other organs when analyzed with combined clinical and RNA sequencing data. After extracting the LMCIF cluster from 373 samples by utilizing 29 LMSIPs and validating them in a microarray cohort, an LMCIF score was established to confirm the role of the immunosuppressive environment as a contributor to the poor prognosis of LM across cancer types. Moreover, this LMCIF score could be used to predict the immune response of cancer patients undergoing immunotherapy. Finally, we identified that the majority of the 31 LMCIF genes exhibited a negative correlation with TME cells in LM patients, one of them, KRT19, which possessed the strongest positive correlation with LMCIF score, was confirmed to have an immunosuppressive effect through IHC analysis. CONCLUSIONS: Our results suggest that LM across cancer types share similar immunological profiles that induce immunotolerance and escape from immune monitoring. The novel LMCIF score represents a common liver metastasis immune cluster for predicting immunotherapy response, the results of which might benefit clinical disease management.

4.
Chem Commun (Camb) ; 59(51): 7982-7985, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37283527

ABSTRACT

The distribution of degradation products, before and after cycling, within common sulfide-based solid electrolytes (ß-Li3PS4, Li6PS5Cl and Li10GeP2S12) was mapped using Raman microscopy. All composite electrodes displayed the appearance of side reaction products after the initial charge-discharge cycle, located at the site of a LiNi0.6Mn0.2Co0.2O2 particle.


Subject(s)
Body Fluids , Electrodes , Lithium , Microscopy , Sulfides
5.
ACS Appl Mater Interfaces ; 15(21): 26047-26059, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37204772

ABSTRACT

Composite polymer electrolytes (CPEs) are attractive materials for solid-state lithium metal batteries, owing to their high ionic conductivity from ceramic ionic conductors and flexibility from polymer components. As with all lithium metal batteries, however, CPEs face the challenge of dendrite formation and propagation. Not only does this lower the critical current density (CCD) before cell shorting, but the uncontrolled growth of lithium deposits may limit Coulombic efficiency (CE) by creating dead lithium. Here, we present a fundamental study on how the ceramic components of CPEs influence these characteristics. CPE membranes based on poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) with Li7La3Zr2O12 (LLZO) nanofibers were fabricated with industrially relevant roll-to-roll manufacturing techniques. Galvanostatic cycling with lithium symmetric cells shows that the CCD can be tripled by including 50 wt % LLZO, but half-cell cycling reveals that this comes at the cost of CE. Varying the LLZO loading shows that even a small amount of LLZO drastically lowers the CE, from 88% at 0 wt % LLZO to 77% at just 2 wt % LLZO. Mesoscale modeling reveals that the increase in CCD cannot be explained by an increase in the macroscopic or microscopic stiffness of the electrolyte; only the microstructure of the LLZO nanofibers in the PEO-LiTFSI matrix slows dendrite growth by presenting physical barriers that the dendrites must push or grow around. This tortuous lithium growth mechanism around the LLZO is corroborated with mass spectrometry imaging. This work highlights important elements to consider in the design of CPEs for high-efficiency lithium metal batteries.

6.
Nanoscale ; 15(5): 2134-2142, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36644953

ABSTRACT

All-inorganic perovskite nanocrystals (NCs) with enhanced environmental stability are of particular interest for optoelectronic applications. Here we report on the formulation of CsPbX3 (X is Br or I) inks for inkjet deposition and utilise these NCs as photosensitive layers in graphene photodetectors, including those based on single layer graphene (SLG) as well as inkjet-printed graphene (iGr) devices. The performance of these photodetectors strongly depends on the device structure, geometry and the fabrication process. We achieve a high photoresponsivity, R > 106 A W-1 in the visible wavelength range and a spectral response controlled by the halide content of the perovskite NC ink. By utilising perovskite NCs, iGr and gold nanoparticle inks, we demonstrate a fully inkjet-printed photodetector with R ≈ 20 A W-1, which is the highest value reported to date for this type of device. The performance of the perovskite/graphene photodetectors is explained by transfer of photo-generated charge carriers from the perovskite NCs into graphene and charge transport through the iGr network. The perovskite ink developed here enabled realisation of stable and sensitive graphene-based photon detectors. Compatibility of inkjet deposition with conventional Si-technologies and with flexible substrates combined with high degree of design freedom provided by inkjet deposition offers opportunities for partially and fully printed optoelectronic devices for applications ranging from electronics to environmental sciences.

7.
ACS Appl Mater Interfaces ; 14(47): 52779-52793, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36382786

ABSTRACT

Lithium-ion batteries are the most ubiquitous energy storage devices in our everyday lives. However, their energy storage capacity fades over time due to chemical and structural changes in their components, via different degradation mechanisms. Understanding and mitigating these degradation mechanisms is key to reducing capacity fade, thereby enabling improvement in the performance and lifetime of Li-ion batteries, supporting the energy transition to renewables and electrification. In this endeavor, surface analysis techniques are commonly employed to characterize the chemistry and structure at reactive interfaces, where most changes are observed as batteries age. However, battery electrodes are complex systems containing unstable compounds, with large heterogeneities in material properties. Moreover, different degradation mechanisms can affect multiple material properties and occur simultaneously, meaning that a range of complementary techniques must be utilized to obtain a complete picture of electrode degradation. The combination of these issues and the lack of standard measurement protocols and guidelines for data interpretation can lead to a lack of trust in data. Herein, we discuss measurement challenges that affect several key surface analysis techniques being used for Li-ion battery degradation studies: focused ion beam scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and time-of-flight secondary ion mass spectrometry. We provide recommendations for each technique to improve reproducibility and reduce uncertainty in the analysis of NMC/graphite Li-ion battery electrodes. We also highlight some key measurement issues that should be addressed in future investigations.

8.
Front Pharmacol ; 13: 999157, 2022.
Article in English | MEDLINE | ID: mdl-36188607

ABSTRACT

Objective: Osteoporosis is a common musculoskeletal disease. Fractures caused by osteoporosis place a huge burden on global healthcare. At present, the mechanism of metabolic-related etiological heterogeneity of osteoporosis has not been explored, and no research has been conducted to analyze the metabolic-related phenotype of osteoporosis. This study aimed to identify different types of osteoporosis metabolic correlates associated with underlying pathogenesis by machine learning. Methods: In this study, the gene expression profiles GSE56814 and GSE56815 of osteoporosis patients were downloaded from the GEO database, and unsupervised clustering analysis was used to identify osteoporosis metabolic gene subtypes and machine learning to screen osteoporosis metabolism-related characteristic genes. Meanwhile, multi-omics enrichment was performed using the online Proteomaps tool, and the results were validated using external datasets GSE35959 and GSE7429. Finally, the immune and stromal cell types of the signature genes were inferred by the xCell method. Results: Based on unsupervised cluster analysis, osteoporosis metabolic genotyping can be divided into three distinct subtypes: lipid and steroid metabolism subtypes, glycolysis-related subtypes, and polysaccharide subtypes. In addition, machine learning SVM identified 10 potentially metabolically related genes, GPR31, GATM, DDB2, ARMCX1, RPS6, BTBD3, ADAMTSL4, COQ6, B3GNT2, and CD9. Conclusion: Based on the clustering analysis of gene expression in patients with osteoporosis and machine learning, we identified different metabolism-related subtypes and characteristic genes of osteoporosis, which will help to provide new ideas for the metabolism-related pathogenesis of osteoporosis and provide a new direction for follow-up research.

9.
Nat Prod Res ; 35(6): 1005-1009, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31135213

ABSTRACT

Sixteen chemical constituents of Paeonia suffruticosa Andr. buds extract (PSABE) were identified by UHPLC-PDA-Q/TOF-MS, belonging to phenolic acids, flavonoids, monoterpene glycosides and gallotannins. PSABE exhibited significant antibacterial activity against six tested microorganisms. Particularly, it showed the most efficient antibacterial effect against Staphylococcus aureus and Escherichia coli O157:H7, which the minimum inhibition concentration (MIC) and minimum bactericide concentration (MBC) both were 1.56 mg/mL and 6.25 mg/mL, respectively. The results showed that PSABE induced obvious alterations in membrane fatty acid composition of S. aureus and E. coli O157:H7, such as the decrease of unsaturated fatty acids, leading to the reduce of membrane fluidity. Membrane integrity was destroyed and cell morphology was obviously changed with PSABE. Furthermore, the transcription level of virulence factors was inhibited in the presence of PSABE. These results indicated that PSABE mainly exerted antibacterial effect by damaging cell membrane and inhibiting transcription level of virulence factors.[Figure: see text].


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli O157/drug effects , Paeonia/chemistry , Plant Extracts/chemistry , Staphylococcus aureus/drug effects , Cell Membrane/drug effects , Membrane Fluidity/drug effects , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Transcription, Genetic/drug effects , Virulence Factors/genetics , Virulence Factors/metabolism
10.
J Phys Chem Lett ; 9(14): 3904-3909, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-29953236

ABSTRACT

A fundamental understanding of the structure and dynamics of organic ionic plastic crystal (OIPC) materials allows for a more rational design of molecular chemistry toward improved mechanical and electrochemical performances. This Letter investigates the solid-state structure and ion dynamics of two imidazolium-based protic organic ionic plastic crystals as well as the ion-transport properties in both compounds. A combination of DSC, conductivity, NMR, and synchrotron X-ray studies revealed that a subtle change in cation chemistry results in substantial differences in the thermal phase behavior, crystalline structures, as well as the ion conduction mechanisms in the protic plastic crystal compounds. Whereas most of the research nowadays has been focused on the optimization of chemistry of cations and anions, this work highlights the importance of microstructures on the ion transport rate and pathways of the OIPC materials.

11.
Phys Chem Chem Phys ; 20(6): 4579-4586, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29376537

ABSTRACT

Proton conductors are widely used in different electrochemical devices including fuel cells and redox flow batteries. Compared to conventional proton conducting polymer membranes, protic organic ionic plastic crystal (POIPC) is a novel solid-state proton conductor with high proton conductivity even under anhydrous conditions. In this work, different organic protic salts based on the same parent di-functional cation with different anions were synthesized and characterized. It is found that the di-protonated cation plays an important role in defining the thermal properties, leading to stronger plastic crystal behavior and a higher melting point. Static solid-state NMR and the synchrotron XRD results show that the di-protonated cation allows greater dynamics in the crystal in contrast to the mono-protonated counterparts. The 1-(N,N-dimethylammonium)-2-(ammonium)ethane triflate ([DMEDAH2][Tf]2) has the highest ionic conductivity of 1.1 × 10-4 S cm-1 at 50 °C, whereas the bis(trifluoromethanesulfonyl)amide counterpart [DMEDAH2][TFSA]2 has the lowest ionic conductivity (2.8 × 10-7 S cm-1 at 50 °C) with no measureable mobile ion component at this temperature. The fraction of mobile species is significantly suppressed in the TFSA containing salts as against the Tf systems.

12.
ChemSusChem ; 10(15): 3135-3145, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28618145

ABSTRACT

Organic ionic plastic crystals (OIPCs) are a class of solid-state electrolytes with good thermal stability, non-flammability, non-volatility, and good electrochemical stability. When prepared in a composite with electrospun polyvinylidene fluoride (PVdF) nanofibers, a 1:1 mixture of the OIPC N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide ([C2 mpyr][FSI]) and lithium bis(fluorosulfonyl)imide (LiFSI) produced a free-standing, robust solid-state electrolyte. These high-concentration Li-containing electrolyte membranes had a transference number of 0.37(±0.02) and supported stable lithium symmetric-cell cycling at a current density of 0.13 mA cm-2 . The effect of incorporating PVdF in the Li-containing plastic crystal was investigated for different ratios of PVdF and [Li][FSI]/[C2 mpyr][FSI]. In addition, Li|LiNi1/3 Co1/3 Mn1/3 O2 cells were prepared and cycled at ambient temperature and displayed a good rate performance and stability.


Subject(s)
Electric Power Supplies , Electricity , Lithium/chemistry , Nanofibers/chemistry , Plastics/chemistry , Electrochemistry , Polyvinyls/chemistry , Temperature
13.
Phys Chem Chem Phys ; 19(3): 2225-2234, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28054060

ABSTRACT

Using the organic ionic plastic crystal N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide ([C2mpyr][FSI]) with electrospun nanofibers, LiFSI doped [C2mpyr][FSI]-PVdF composites were developed as solid state, self-standing electrolyte membranes. Different lithium salt concentration were investigated, with 10 mol% LiFSI found to be optimal amongst those assessed. Composites with different weight ratios of plastic crystal and polymer were prepared and 10 wt% polymer gave the highest conductivity. In addition, the effects of PVdF incorporation on the morphological, thermal, and structural properties of the organic ionic plastic crystal were investigated. Ion mobilities were also studied using solid-state nuclear magnetic resonance techniques. The electrolytes were then assembled into lithium symmetric cells and cycled galvanostatically at 0.13 mA cm-2 at both ambient temperature and at 50 °C, for more than 500 cycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...