Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 669: 896-901, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38749228

ABSTRACT

Despite extensive research has been conducted on atomic dispersion catalysts for various reactions, altering the electronic structure of the central metal to enhance electrochemical reactivity remains a challenging task. Herein, the electrochemical reactivity was considerably enhanced by introducing heteroatomic B to adjust the d-band of single Fe center. In specific, the obtained FeSA-BNC catalyst demonstrated an outstanding ORR performance (E1/2 = 0.87 V) and exhibited greater long-term durability in alkaline media compared to Pt/C. The performance of FeSA-BNC in Zn-air battery was also higher than that of Pt/C. According to theoretical calculations, a downward shift in the d-band center of Fe was induced by introducing B, thereby improving the desorption of intermediates and facilitating the oxygen reduction reaction (ORR).

2.
Small ; : e2402430, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623987

ABSTRACT

The electronic states of metal catalysts can be redistributed by the rectifying contact between metal and semiconductor e.g., N-doped carbon (NC), while the interfacial regulation degree is very limited. Herein, a deep electronic state regulation is achieved by constructing a novel double-heterojunctional Co/Co3O4@NC catalyst containing Co/Co3O4 and Co3O4/NC heterojunctions. When used for dilute electrochemical NO3 - reduction reaction (NO3RR), the as-prepared Co/Co3O4@NC exhibits an outstanding Faradaic efficiency for NH3 formation (FENH3) of 97.9%, -0.4 V versus RHE and significant NH3 yield of 303.5 mmol h-1 gcat -1 at -0.6 V at extremely low nitrate concentrations (100 ppm NO3 --N). Experimental and theoretical results reveal that the dual junctions of Co/Co3O4 and Co3O4/NC drive a unidirectional electron transfer from Co to NC (Co→Co3O4→NC), resulting in electron-deficient Co atoms. The electron-deficient Co promotes NO3 - adsorption, the rate-determining step (RDS) for NO3RR, facilitating the dilute NO3RR to NH3. The design strategy provides a novel reference for unidirectional multistage regulation of metal electronic states boosting electrochemical dilute NO3RR, which opens up an avenue for deep electronic state regulation of electrocatalyst breaking the limitation of the electronic regulation degree by rectifying contact.

3.
Front Immunol ; 14: 1239145, 2023.
Article in English | MEDLINE | ID: mdl-37691959

ABSTRACT

Background: Trauma causes disability and mortality globally, leading to fractures and hemorrhagic shock. This can trigger an irregular inflammatory response that damages remote organs, including liver. Aging increases the susceptibility to dysregulated immune responses following trauma, raising the risk of organ damage, infections, and higher morbidity and mortality in elderly patients. This study investigates how aging affects liver inflammation and damage post-trauma. Methods: 24 male C57BL/6J mice were randomly divided into four groups. Twelve young (17-26 weeks) and 12 aged (64-72 weeks) mice were included. Mice further underwent either hemorrhagic shock (trauma/hemorrhage, TH), and femoral fracture (osteotomy) with external fixation (Fx) (THFx, n=6) or sham procedures (n=6). After 24 hours, mice were sacrificed. Liver injury and apoptosis were evaluated using hematoxylin-eosin staining and activated caspase-3 immunostaining. CXCL1 and infiltrating polymorphonuclear leukocytes (PMNL) in the liver were assessed by immunostaining, and concentrations of CXCL1, TNF, IL-1ß, and IL-10 in the liver tissue were determined by ELISA. Gene expression of Tnf, Cxcl1, Il-1ß, and Cxcl2 in the liver tissue was determined by qRT-PCR. Finally, western blot was used to determine protein expression levels of IκBα, Akt, and their phosphorylated forms. Results: THFx caused liver damage and increased presence of active caspase-3-positive cells compared to the corresponding sham group. THFx aged group had more severe liver injury than the young group. CXCL1 and PMNL levels were significantly higher in both aged groups, and THFx caused a greater increase in CXCL and PMNL levels in aged compared to the young group. Pro-inflammatory TNF and IL-1ß levels were elevated in aged groups, further intensified by THFx. Anti-inflammatory IL-10 levels were lower in aged groups. Tnf and Cxcl1 gene expression was enhanced in the aged sham group. Phosphorylation ratio of IκBα was significantly increased in the aged sham group versus young sham group. THFx-induced IκBα phosphorylation in the young group was significantly reduced in the aged THFx group. Akt phosphorylation was significantly reduced in the THFx aged group compared to the THFx young group. Conclusion: The findings indicate that aging may lead to increased vulnerability to liver injury and inflammation following trauma due to dysregulated immune responses.


Subject(s)
Femoral Fractures , Shock, Hemorrhagic , Male , Animals , Mice , Mice, Inbred C57BL , Caspase 3 , Interleukin-10 , NF-KappaB Inhibitor alpha , Proto-Oncogene Proteins c-akt , Hemorrhage , Inflammation , Liver
4.
Front Oncol ; 13: 1213045, 2023.
Article in English | MEDLINE | ID: mdl-37637035

ABSTRACT

Breast cancer, the most prevalent malignant tumor among women, poses a significant threat to patients' physical and mental well-being. Recent advances in early screening technology have facilitated the early detection of an increasing number of breast cancers, resulting in a substantial improvement in patients' overall survival rates. The primary techniques used for early breast cancer diagnosis include mammography, breast ultrasound, breast MRI, and pathological examination. However, the clinical interpretation and analysis of the images produced by these technologies often involve significant labor costs and rely heavily on the expertise of clinicians, leading to inherent deviations. Consequently, artificial intelligence(AI) has emerged as a valuable technology in breast cancer diagnosis. Artificial intelligence includes Machine Learning(ML) and Deep Learning(DL). By simulating human behavior to learn from and process data, ML and DL aid in lesion localization reduce misdiagnosis rates, and improve accuracy. This narrative review provides a comprehensive review of the current research status of mammography using traditional ML and DL algorithms. It particularly highlights the latest advancements in DL methods for mammogram image analysis and offers insights into future development directions.

5.
Front Immunol ; 14: 1253637, 2023.
Article in English | MEDLINE | ID: mdl-38274788

ABSTRACT

Background: Trauma, a significant global cause of mortality and disability, often leads to fractures and hemorrhagic shock, initiating an exaggerated inflammatory response, which harms distant organs, particularly the lungs. Elderly individuals are more vulnerable to immune dysregulation post-trauma, leading to heightened organ damage, infections, and poor health outcomes. This study investigates the role of NF-κB and inflammasomes in lung damage among aged mice post-trauma. Methods: Twelve male C57BL/6J mice underwent hemorrhagic shock and a femoral fracture (osteotomy) with external fixation (Fx) (trauma/hemorrhage, THFx), while another 12 underwent sham procedures. Mice from young (17-26 weeks) and aged (64-72 weeks) groups (n=6) were included. After 24h, lung injury was assessed by hematoxylin-eosin staining, prosurfactant protein C (SPC) levels, HMGB1, and Muc5ac qRT-PCR. Gene expression of Nlrp3 and Il-1ß, and protein levels of IL-6 and IL-1ß in lung tissue and bronchoalveolar lavage fluid were determined. Levels of lung-infiltrating polymorphonuclear leukocytes (PMNL) and activated caspase-3 expression to assess apoptosis, as well as NLRP3, ASC, and Gasdermin D (GSDMD) to assess the expression of inflammasome components were analyzed via immunostaining. To investigate the role of NF-κB signaling, protein expression of phosphorylated and non-phosphorylated p50 were determined by western blot. Results: Muc5ac, and SPC as lung protective proteins, significantly declined in THFx versus sham. THFx-aged exhibited significantly lower SPC and higher HMGB1 levels versus THFx-young. THFx significantly increased activated caspase-3 versus both sham groups, and THFx-aged had significantly more caspase-3 positive cells versus THFx-young. IL-6 significantly increased in both sham and THFx-aged groups versus corresponding young groups. THFx significantly enhanced PMNL in both groups versus corresponding sham groups. This increase was further heightened in THFx-aged versus THFx-young. Expression of p50 and phosphorylated p50 increased in all aged groups, and THFx-induced p50 phosphorylation significantly increased in THFx-aged versus THFx-young. THFx increased the expression of inflammasome markers IL-1ß, NLRP3, ASC and GSDMD versus sham, and aging further amplified these changes significantly. Conclusion: This study's findings suggest that the aging process exacerbates the excessive inflammatory response and damage to the lung following trauma. The underlying mechanisms are associated with enhanced activation of NF-κB and increased expression of inflammasome components.


Subject(s)
HMGB1 Protein , Shock, Hemorrhagic , Humans , Male , Mice , Animals , Aged , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Caspase 3 , Interleukin-6 , Mice, Inbred C57BL , Lung/metabolism
6.
Front Immunol ; 13: 866925, 2022.
Article in English | MEDLINE | ID: mdl-35663960

ABSTRACT

Background: Trauma is the third leading cause of mortality worldwide. Upon admission, up to 50% of traumatized patients are acutely intoxicated with alcohol, which might lead to aberrant immune responses. An excessive and uncontrolled inflammatory response to injury is associated with damage to trauma-distant organs. We hypothesize that, along with inflammation-induced apoptosis, the activation of the Wnt/ß-catenin signaling pathway would cause breakdown of the lung barrier and the development of lung injury after trauma. It remains unclear whether ethanol intoxication (EI) prior to trauma and hemorrhagic shock will attenuate inflammation and organ injury. Methods: In this study, 14 male C57BL/6J mice were randomly assigned to two groups and exposed either to EtOH or to NaCl as a control by an oral gavage before receiving a femur fracture (Fx) and hemorrhagic shock, followed by resuscitation (THFx). Fourteen sham animals received either EtOH or NaCl and underwent surgical procedures without THFx induction. After 24 h, oil red O staining of fatty vacuoles in the liver was performed. Histological lung injury score (LIS) was assessed to analyze the trauma-induced RLI. Gene expression of Cxcl1, Il-1ß, Muc5ac, Tnf, and Tnfrsf10b as well as CXCL1, IL-1ß, and TNF protein levels in the lung tissue and bronchoalveolar lavage fluid were determined by RT-qPCR, ELISA, and immunohistological analyses. Infiltrating polymorphonuclear leukocytes (PMNLs) were examined via immunostaining. Apoptosis was detected by activated caspase-3 expression in the lung tissue. To confirm active Wnt signaling after trauma, gene expression of Wnt3a and its inhibitor sclerostin (Sost) was determined. Protein expression of A20 and RIPK4 as possible modulators of the Wnt signaling pathway was analyzed via immunofluorescence. Results: Significant fatty changes in the liver confirmed the acute EI. Histopathology and decreased Muc5ac expression revealed an increased lung barrier breakdown and concomitant lung injury after THFx versus sham. EI prior trauma decreased lung injury. THFx increased not only the gene expression of pro-inflammatory markers but also the pulmonary infiltration with PMNL and apoptosis versus sham, while EI prior to THFx reduced those changes significantly. EI increased the THFx-reduced gene expression of Sost and reduced the THFx-induced expression of Wnt3a. While A20, RIPK4, and membranous ß-catenin were significantly reduced after trauma, they were enhanced upon EI. Conclusion: These findings suggest that acute EI alleviates the uncontrolled inflammatory response and lung barrier breakdown after trauma by suppressing the Wnt/ß-catenin signaling pathway.


Subject(s)
Alcoholic Intoxication , Lung Injury , Shock, Hemorrhagic , Animals , Disease Models, Animal , Ethanol/toxicity , Humans , Inflammation/pathology , Lung/pathology , Lung Injury/etiology , Lung Injury/pathology , Male , Mice , Mice, Inbred C57BL , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/pathology , Sodium Chloride , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL
...