Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 235: 119907, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37001232

ABSTRACT

The influence of influent species immigration (ISI) on membrane fouling behaviors of membrane bioreactors (MBRs) treating municipal wastewater remains elusive, leading to an incomprehensive understanding of fouling ecology in MBRs. To address this issue, two anoxic/aerobic MBRs, which were fed with raw (named MBR-C) and sterilized (MBR-E) municipal wastewater, were operated. Compared with the MBR-E, the average fouling rate of the MBR-C was lowered by 30% over the long-term operation. In addition, the MBR-E sludge had significantly higher unified membrane fouling index and biofilm formation potential than the MBR-C sludge. Considerably larger flocs size and lower soluble microbial products (SMP) concentrations were observed in the MBR-C than in the MBR-E. Moreover, the 16S rRNA gene sequencing results showed that highly diverse and abundant populations responsible for floc-forming, hydrolysis/fermentation and SMP degradation readily inhabited the influent, shaping a unique microbial niche. Based on species mass balance-based assessment, most of these populations were nongrowing and their relative abundances were higher in the MBR-C than in the MBR-E. This suggested an important contribution of the ISI on the assemblage of these bacteria, thus supporting the increased flocs size and lowered SMP concentrations in the MBR-C. Moreover, the SMP-degrading related bacteria and functional pathways played a more crucial role in the MBR-C ecosystem as revealed by the bacterial co-occurrence network and Picrust2 analysis. Taken together, this study reveals the positive role of ISI in fouling mitigation and highlights the necessity for incorporating influent wastewater communities for fouling control in MBR plants.


Subject(s)
Sewage , Wastewater , RNA, Ribosomal, 16S , Ecosystem , Emigration and Immigration , Membranes, Artificial , Bioreactors , Bacteria
2.
Sci Total Environ ; 873: 162448, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36828058

ABSTRACT

Elucidating community assembly and succession is crucial to understanding the ecosystem functioning. Herein, the ecological processes underpinning community assembly and succession were studied to uncover the respective ecological functions of attached biofilms and suspended biomass in a sequencing batch moving bed biofilm reactor. Compared with suspended biomass, attached biofilms presented higher relative abundances of Nitrospira (2.94 %) and Nitrosomonas (1.25 %), and contributed to 66.89 ± 11.37 % and 68.11 ± 12.72 % of nitrification and denitrification activities, respectively. The microbial source tracking result demonstrated that early formation of suspended biomass was dominated by the seeding effect of detached biofilms in the start-up period (days 0-30), while self-growth of previous suspended biomass was eventually outcompeted the seeding effect when the reactor stabilized (days 31-120). Null model and ecological network analysis further suggested distinctive ecological processes underpinning the differentiation between attached and suspended communities in the same reactor. Specifically, in the start-up period, positive interactions facilitated early formation of attached (73.84 %) and suspended communities (59.41 %), while homogenous selection (88.89 %) and homogenizing dispersal (65.71 %) governed assembly of attached and suspended communities, respectively. When the reactor stabilized, attached and suspended communities showed low composition turnover as reflected by dominant homogenizing dispersal, while they presented distinctive trends of interspecies interactions. This study sheds light on discrepant ecological processes governing community differentiation of attached biofilms and suspended biomass, which would provide ecological insights into the regulation of hybrid ecosystems.


Subject(s)
Biofilms , Ecosystem , Biomass , Nitrification , Bacteria , Bioreactors
SELECTION OF CITATIONS
SEARCH DETAIL
...