Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Harmful Algae ; 121: 102370, 2023 01.
Article in English | MEDLINE | ID: mdl-36639187

ABSTRACT

The Bohai Sea, a semi-enclosed inland sea in China and an important mariculture region, has experienced extensive harmful algal blooms (HABs) and their negative impacts for several decades. To investigate the changes of HABs and their potential drivers over time and space, a dataset of 230 HAB events (1952-2017), along with corresponding environmental data (1990-2017) was compiled. The frequency of HAB events in the Bohai Sea has increased over time but plateaued in the last decade, and our analysis showed that history of HABs in the Bohai Sea could be categorized into three periods based on their frequency, scale, and HAB-forming species. The seasonal window of HAB events has started earlier and lasted longer, and the main hotspot has moved from Bohai Bay to coastal waters of Qinhuangdao over time. There were marked shifts in the representative HAB-forming microalgae, from dinoflagellates in the first period (before 2000) to haptophytes in the second period (2000-2009), and pelagophytes in the third period (2009 onwards). These community changes are accompanied by a trend toward diversification of HAB-forming microalgae, decrease in cell-size, and increase in negative impacts. Statistical analyses indicate that long-term changes in HABs in the Bohai Sea are linked with the combined effects of climate change, eutrophication and mariculture development. The results of the present study require to refine future monitoring programs, develop adaptive management strategies and predictive models for HABs in the Bohai Sea.


Subject(s)
Dinoflagellida , Microalgae , Harmful Algal Bloom , Climate Change , China
2.
Water Res ; 221: 118807, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35810634

ABSTRACT

Harmful algal blooms (HABs) worldwide are experiencing obvious changes under the combined impacts of global warming, eutrophication, and other driving forces. In the East China Sea (ECS), large-scale blooms caused by dinoflagellates occurred since 2000 and there has been an apparent shift of bloom-causative microalgae from diatoms to dinoflagellates. To predict the future evolution of HABs in this region, a model was developed based on the competition between diatoms and dinoflagellates, which would serve to reproduce the seasonal succession of microalgal blooms driven by multiple environmental factors. The evolution features of HABs were then projected under different scenarios of eutrophication and global warming. Under the 'business as usual' scenario, dinoflagellate blooms are expected to become more frequent with higher peak biomass concentrations over the next 30 years. Changes in nutrient composition of the Changjiang riverine discharge may largely give rise to this phenomenon, and accelerated warming associated with climate change may result in earlier occurrence of dinoflagellate blooms. To prevent further intensification of dinoflagellate blooms, efforts could be made to reduce nitrogen inputs and maintain or even increase silicate inputs from the Changjiang river.


Subject(s)
Diatoms , Dinoflagellida , Microalgae , China , Climate Change , Eutrophication , Harmful Algal Bloom , Rivers
3.
Appl Environ Microbiol ; 88(4): e0165421, 2022 02 22.
Article in English | MEDLINE | ID: mdl-34910557

ABSTRACT

The giant-colony-forming haptophyte Phaeocystis globosa has caused several large-scale blooms in the Beibu Gulf since 2011, but the distribution and dynamics of the blooms remained largely unknown. In this study, colonies of P. globosa, as well as membrane-concentrated phytoplankton samples, were collected during eight cruises in the Beibu Gulf from September 2016 to August 2017. Pigments were analyzed by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). The pigment 19'-hexanoyloxyfucoxanthin (hex-fuco), generally considered a diagnostic pigment for Phaeocystis, was not detected in P. globosa colonies in the Beibu Gulf, whereas 19'-butanoyloxyfucoxanthin (but-fuco) was found in all colony samples. Moreover, but-fuco in membrane-concentrated phytoplankton samples exhibited a similar distribution pattern to that of P. globosa colonies, suggesting that but-fuco provided the diagnostic pigment for bloom-forming P. globosa in the Beibu Gulf. Based on the distribution of but-fuco in different water masses in the region prior to the formation of intensive blooms, it is suggested that P. globosa blooms in the Beibu Gulf could originate from two different sources. IMPORTANCE Phaeocystis globosa has formed intensive blooms in the South China Sea and even around the world, causing huge social economic losses and environmental damage. However, little is known about the formation mechanism and dynamics of P. globosa blooms. 19'-Hexanoyloxyfucoxanthin (hex-fuco) is often used as the pigment proxy to estimate Phaeocystis biomass, while this is challenged by the giant-colony-forming P. globosa in the Beibu Gulf, which contains only 19'-butanoyloxyfucoxanthin (but-fuco) but not hex-fuco. Using but-fuco as a diagnostic pigment, we traced two different origins of P. globosa blooms in the Beibu Gulf. This study clarifies the development process of P. globosa blooms in the Beibu Gulf, which provides a basis for the early monitoring and prevention of the blooms.


Subject(s)
Haptophyta , China , Harmful Algal Bloom , Phytoplankton , Pigmentation
4.
Environ Pollut ; 259: 113730, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31887584

ABSTRACT

The Changjiang (Yangtze River) River estuary (CRE) and its adjacent coastal waters is a notable region for nutrient pollution, which results in severe problems of coastal eutrophication and harmful algal blooms (HABs). The occurrence of HABs, particularly those of dinoflagellate Alexandrium spp. capable of producing paralytic shellfish toxins (PSTs), has an increasing risk of contaminating seafood and poisoning human-beings. The investigation of PSTs, however, is often hampered by the relatively low abundance of Alexandrium spp. present in seawater. In this study, a monitoring strategy of PSTs using net-concentrated phytoplankton from a large volume of seawater was employed to examine spatiotemporal variations of PSTs in the CRE and its adjacent waters every month from February to September in 2015. Toxins in concentrated phytoplankton samples were analyzed using high-performance liquid chromatography coupled with a fluorescence detector (HPLC-FLD). The results showed that PSTs could be detected in phytoplankton samples during the sampling stage in the CRE and its adjacent waters. Toxin content increased gradually from February to May, reached the peak in June, and then decreased rapidly from July to September. The maximum value of PST content was 215 nmol m-3 in June. Low-potency toxins N-sulfocarbamoyl toxins 1/2 (C1/2) were the most dominant components of PST in phytoplankton samples from February to June in 2015, while high-potency gonyautoxin 4 (GTX4) became the dominant component from July to September. Toxins were mainly detected from three regions, the sea area north to the CRE, the sea area east to the CRE, and sea area near Zhoushan Island south to the CRE. Based on the results of this study, it can be inferred that the three regions around the CRE in May and June is of high risk for PST contamination and seafood poisoning.


Subject(s)
Dinoflagellida , Estuaries , Shellfish , Harmful Algal Bloom , Humans , Rivers
5.
Harmful Algae ; 84: 127-138, 2019 04.
Article in English | MEDLINE | ID: mdl-31128797

ABSTRACT

Large-scale blooms formed by pico-sized phytoplankton, which strongly inhibited feeding activity and growth of cultured scallops, have been recorded along the coast of Qinhuangdao in the Bohai Sea since 2009. Based on pigment profiles and clone library analysis of phytoplankton samples during the blooms, the major bloom-forming species was primarily identified as pelagophyte Aureococcus anophagefferens Hargraves et Sieburth, the causative species of intensive brown tides in the United States and South Africa. Due to the indistinct morphological features of the bloom-forming microalgae and limited knowledge on the composition of phytoplankton communities, there were still disputes concerning the causative species of the blooms. In this study, the method of high-throughput sequencing targeted 18S rDNA V4 region was used to study the composition of pico- and nano-sized phytoplankton communities in 2013 and 2014. A total of 18 groups of eukaryotic microalgae at the class level and more than 2000 operational taxonomic units (OTUs) were identified in phytoplankton samples collected from the brown-tide zone in the Qinhuangdao coastal waters. For both years, A. anophagefferens was the most dominant species during the bloom period and its maximum relative abundance exceeded 60 percent. Along with other evidence, the results further confirm that A. anophagefferens is the major causative species of the pico-sized phytoplankton blooms in the Bohai Sea. The outbreak of brown tide exhibited a strong inter-annual variation between 2013 and 2014, and an increasing dominance of dinoflagellates could be observed in the Qinhuangdao coastal waters.


Subject(s)
Microalgae , Stramenopiles , China , High-Throughput Nucleotide Sequencing , Phytoplankton
6.
Harmful Algae ; 62: 60-72, 2017 02.
Article in English | MEDLINE | ID: mdl-28118893

ABSTRACT

The sea area adjacent to the Changjiang River estuary is the most notable region for harmful algal blooms (HABs1) in China as both diatom and dinoflagellate blooms have been recorded in this region. Affected by the Changjiang diluted water (CDW2) and currents from the open ocean (i.e., Taiwan warm current, TWC3), the environmental conditions in the coastal waters adjacent to the Changjiang River estuary are quite complex. To obtain a better understanding of the mechanisms of HABs in this region, analyses based on field investigation data collected by the National Basic Research Priority Program (CEOHAB I4) were performed using principle component analysis (PCA5), multiple regression analysis (MRA6) and path analysis (PA7). The results suggested that phosphate and silicate are the major factors that directly affect the diatom bloom, while dissolved inorganic nitrogen (DIN8), temperature and turbidity are the factors that influence the dinoflagellate bloom. CDW and the TWC have different roles in affecting the two types of algal blooms. CDW, which has a high concentration of nitrate and silicate, is essential for the diatom bloom, while the intrusion of the TWC (mainly Kuroshio subsurface water that is rich in phosphate at the bottom) is critical for the maintenance of the dinoflagellate bloom. The results of this study offer a better understanding of the mechanisms of HABs in the East China Sea.


Subject(s)
Diatoms/physiology , Dinoflagellida/physiology , Environment , Environmental Monitoring , Harmful Algal Bloom , China , Estuaries , Fresh Water , Models, Biological , Principal Component Analysis , Regression Analysis , Water Movements
7.
Appl Biochem Biotechnol ; 171(7): 1715-25, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23996118

ABSTRACT

A highly efficient oil-degrading bacteria JZX-01 was isolated from the oil-contaminated soil of the seacoast near the Boxi Offshore Oil Field of China. Morphological, physiological, and 16S rDNA gene sequence analyses indicated that JZX-01 was assigned to the genus Rhodococcus sp. This strain decomposed 65.27 ± 5.63 % of the crude oil in 9 days. Gas chromatography-mass spectrometry analysis showed that even the long-chain hydrocarbons (C31-C38) and branched alkanes (pristine and phytane), which were regarded as the stubborn ones, could be degraded. Further study showed that the bacteria still has good oil degradation ability at low temperatures as well as under high salt conditions. Moreover, JZX-01 was found to have a biosurfactant-producing capacity, which significantly favors the surface tension reduction and crude oil degradation. The promising isolated strain Rhodococcus sp. JZX-01 could be further used for the bioremediation of oil-polluted soil or seawater in a wide range of temperatures and high salt conditions.


Subject(s)
Petroleum/metabolism , Rhodococcus/isolation & purification , Rhodococcus/metabolism , Biodegradation, Environmental , Hydrocarbons/metabolism , Surface-Active Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...