Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Meat Sci ; 214: 109499, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38677056

ABSTRACT

Methionine plays a vital role in protein synthesis, and regulation of antioxidant response in ruminants. This study aimed to assess the effects of dietary supplementation with N-acetyl-l-methionine (NALM), which serves a source of rumen-protected methionine, on growth performance, carcass traits, meat quality, and oxidative stability. Sixty Angus heifers (initial body weight = 408 ± 51.2 kg, 15-18 months) were stratified by body weight and randomly assigned to four dietary treatments: a control group (0% NALM), and experimental groups receiving diets containing 0.125%, 0.25%, and 0.50% NALM (dry matter (DM) basis), respectively. The experiment included a 2-week adaptation and a 22-week data and sample collection period. Results indicated that blood urea nitrogen in the plasma of the 0.25% NALM group was lower compared to the control and the 0.50% NALM groups (P = 0.02). The plasma methionine (P = 0.04), proline (P < 0.01), and tryptophan (P = 0.05) were higher in the 0.25% and 0.50% NALM groups, as well as the methionine and proline in the muscle of the 0.25% NALM group (P < 0.01). The muscle pH (P < 0.01) was increased by supplementing 0.25% and 0.50% NALM in diets but decreased the lactate (P < 0.01). The 0.25% NALM group also increased a* (P = 0.05), decreased L* (P = 0.05), drip loss (P = 0.01), and glycolytic potential in the muscle (P < 0.01). The total antioxidant capacity, superoxide dismutase, glutathione peroxidase, catalase, and glutathione in muscle of 0.25% NALM group were higher than that of the control (P < 0.01), and the malondialdehyde and protein carbonyl were lower (P < 0.01). In conclusion, the dietary supplement with NALM improves meat quality by enhancing the antioxidant effect of lipids and proteins.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Methionine , Animals , Cattle , Female , Animal Feed/analysis , Methionine/administration & dosage , Diet/veterinary , Muscle, Skeletal/metabolism , Muscle, Skeletal/chemistry , Red Meat/analysis , Antioxidants , Oxidation-Reduction , Oxidative Stress/drug effects , Animal Nutritional Physiological Phenomena
2.
Animals (Basel) ; 14(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338043

ABSTRACT

Guanidinoacetic acid (GAA) functions as a precursor for creatine synthesis in the animal body, and maintaining ample creatine reserves is essential for fostering rapid growth. This study aimed to explore the impact of GAA supplementation on growth performance, rumen fermentation, blood indices, nutrient digestion, and nitrogen metabolism in Angus steers through two experiments: a feeding experiment (Experiment 1) and a digestive metabolism experiment (Experiment 2). In Experiment 1, thirty-six Angus steers (485.64 ± 39.41 kg of BW) at 16 months of age were randomly assigned to three groups: control (CON), a conventional dose of GAA (CGAA, 0.8 g/kg), and a high dose of GAA (HGAA, 1.6 g/kg), each with twelve steers. The adaptation period lasted 14 days, and the test period was 130 days. Weighing occurred before morning feeding on days 0, 65, and 130, with rumen fluid and blood collected before morning feeding on day 130. Experiment 2 involved fifteen 18-month-old Angus steers (575.60 ± 7.78 kg of BW) randomly assigned to the same three groups as in Experiment 1, with a 7-day adaptation period and a 3-day test period. Fecal and urine samples were collected from all steers during this period. Results showed a significantly higher average daily gain (ADG) in the CGAA and HGAA groups compared to the CON group (p = 0.043). Additionally, the feed conversion efficiency (FCE) was significantly higher in the CGAA and HGAA groups than in the CON group (p = 0.018). The concentrations of acetate and the acetate:propionate ratio were significantly lower in the CGAA and HGAA groups, while propionate concentration was significantly higher (p < 0.01). Serum concentration of urea (UREA), blood ammonia (BA), GAA, creatine, and catalase (CAT) in the CGAA and HGAA groups were significantly higher than in the CON group, whereas malondialdehyde (MDA) concentrations were significantly lower (p < 0.05). Digestibility of dry matter (DM) and crude protein (CP) and the nitrogen retention ratio were significantly higher in the CGAA and HGAA groups than in the CON group (p < 0.05). In conclusion, dietary addition of both 0.8 g/kg and 1.6 g/kg of GAA increased growth performance, regulated rumen fermentation and blood indices, and improved digestibility and nitrogen metabolism in Angus steers. However, higher doses of GAA did not demonstrate a linear stacking effect.

3.
Metabolites ; 14(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38248861

ABSTRACT

This study was conducted to explore the potential effect of Yucca schidigera extract (YSE) on the metabolism of beef cattle. Thirty Angus crossbreed steers were selected, with an initial mean body weight of 506.6 ± 33.3 kg, and assigned to two treatments: a diet with no additives (CON group) and a diet supplemented with 1.75 g/kg of YSE (YSE group) (on a dry matter basis). The experiment lasted for 104 days, with 14 days for adaptation. The results showed that adding YSE could significantly improve the average daily gain (ADG) from 1 to 59 d (15.38%) (p = 0.01) and 1 to 90 d (11.38%) (p < 0.01), as well as dry matter digestibility (DMD) (0.84%) (p < 0.05). The contents of alanine aminotransferase, aspartate aminotransferase, and bilirubin and the total antioxidant capacity were increased and blood urea was reduced in the YSE group, compared to the CON group (p < 0.05). Both the glycerophospholipids and bile acids, including phosphocholine, glycerophosphocholine, PC(15:0/18:2(9Z,12Z)), PE(18:0/20:3(5Z,8Z,11Z)), PE(18:3(6Z,9Z,12Z)/P-18:0), LysoPC(15:0), LysoPC(17:0), LysoPC(18:0), LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)), deoxycholic acid, glycocholic acid, and cholic acid, were upregulated by the addition of YSE. In summary, YSE may improve the ADG by increasing the blood total antioxidant capacity and glycerophospholipid synthesis, maintaining steers under a healthy status that is beneficial for growth. Furthermore, YSE may also increase the expression of bile acid synthesis, thereby promoting DMD, which, in turn, offers more nutrients available for growth.

4.
Front Microbiol ; 14: 1247251, 2023.
Article in English | MEDLINE | ID: mdl-37700865

ABSTRACT

Yak (Bos grunniens) is an important economic animal species on the Qinghai-Tibet Plateau. Yaks grazed in the cold season often suffer from nutritional stress, resulting in low production performance. This situation can be improved by properly feeding the grazing yaks in the cold season; however, there is still little information about the effect of different feeding levels on the intestinal microflora and metabolites of yaks. Therefore, this study aimed to explore the effect of feeding different doses of concentrate supplements on rumen bacterial communities and metabolites in grazing yaks during the cold season. Feed concentrate supplementation significantly improved the production performance and rumen fermentation status of grazing yaks during the cold season, and switched the type of ruminal fermentation from acetic acid fermentation to propionic acid fermentation. Ruminal fermentation parameters and ruminal bacterial abundance correlated strongly. At the phylum level, the abundance of Firmicutes increased with increasing concentrate supplementation, while the opposite was true for Bacteroidota. At the genus level, the abundance of Christensenellaceae_R-7_group, NK4A214_group, Ruminococcus, norank_f__Eubacterium_coprostanoligenes_group, norank_f__norank_o__ Clostridia_UCG-014, Lachnospiraceae_NK3A20_group, Acetitomaculum, and Family_XIII_AD3011_group increased with increasing concentrate supplementation, while the abundance of Rikenellaceae_RC9_gut_ group decreased. Dietary concentrate supplementation altered the concentration and metabolic mode of metabolites in the rumen, significantly affecting the concentration of metabolites involved in amino acid and derivative metabolism (e.g., L-aspartic acid, L-glutamate, and L-histidine), purine metabolism (e.g., guanine, guanosine, and hypoxanthine), and glycerophospholipid metabolism (e.g., phosphatidate, phosphatidylcholine, and phosphocholine), and other metabolic pathways. The strong correlation between yak rumen microorganisms and metabolites provided a more comprehensive understanding of microbial community composition and function. This study showed significant changes in the composition and abundance of bacteria and metabolites in the rumen of cool season grazing yaks fed with concentrate supplements. Changes in ruminal fermentation parameters and metabolite concentration also showed a strong correlation with ruminal bacterial communities. These findings will be helpful to formulate supplementary feeding strategies for grazing yaks in the cold season from the perspective of intestinal microorganisms.

5.
Water Res ; 245: 120647, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37738938

ABSTRACT

Deep reservoirs vary in their hydrostatic pressure owing to artificial water level control. The potential migration of phosphorus (P) in reservoir sediments raises the risk of harmful algal blooms. To ascertain the mechanisms of endogenous P release in reservoirs, we characterised aquatic microbial communities associated with coupled iron (Fe), P and sulphur (S) cycling at the sediment-water interface. The responses of microbial communities to hydrostatic pressures of 0.2-0.7 mega pascals (MPa; that is, micro-pressures) were investigated through a 30-day simulation experiment. Our findings unravelled a potential mechanism that micro-pressure enhanced the solubilisation of Fe/aluminium (Al)-bound P caused by microbially-driven sulphate reduction, leading to endogenous P release in the deep reservoir. Although the vertical distribution of labile Fe was not affected by pressure changes, we did observe Fe resupply at sediment depths of 2-5 cm. Metagenomic analysis revealed increased abundances of functional genes for P mineralisation (phoD, phoA), P solubilisation (pqqC, ppx-gppA) and sulphate reduction (cysD, cysC) in sediments subjected to micro-pressure, which contrasted with the pattern of S oxidation gene (soxB). There was a tight connection between P and S cycling-related microbial communities, based on significant positive correlations between labile element (P and S) concentrations and functional gene (phoD, cysD) abundances. This provided strong support that Fe-P-S coupling processes were governed by micro-pressure through modulation of P and S cycling-related microbial functions. Key taxa involved in P and S cycling (for example, Bradyrhizobium, Methyloceanibacter) positively responded to micro-pressure and as such, indirectly drove P release from sediments by facilitating P mineralisation and solubilisation coupled with sulphate reduction.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Phosphorus/analysis , Phosphates/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/analysis , Environmental Monitoring , Water/analysis , Sulfates
6.
Environ Sci Pollut Res Int ; 30(36): 86425-86436, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37405603

ABSTRACT

A biological aluminum-based P-inactivation agent (BA-PIA) has been developed and demonstrated to effectively remove nitrogen and phosphorus; however, whether it can control the release of nitrogen and phosphorus in sediment still needs study. This study aimed to examine the effect of BA-PIA on controlling sediment nitrogen and phosphorus release. BA-PIA was prepared by artificial aeration. The use of BA-PIA in controlling nitrogen and phosphorus release was studied using water and sediment from a landscape lake in static simulation experiments. The sediment microbial community was analyzed using high-throughput sequencing. Static simulation showed that the reduction rates of total nitrogen (TN) and total phosphorus (TP) by BA-PIA were 66.8 ± 1.46% and 96.0 ± 0.98%, respectively. In addition, capping of BA-PIA promotes the conversion of easily released nitrogen (free nitrogen) in the sediment to stable nitrogen (acid-hydrolyzable nitrogen). The content of weakly adsorbed phosphorus and iron-adsorbed phosphorus in the sediment was reduced. The relative abundance of nitrifying bacteria, denitrifying bacteria, and microorganisms carrying phosphatase genes (such as Actinobacteria) in the sediment increased by 109.78%. The capping of BA-PIA not only effectively removed the nitrogen and phosphorus in water but greatly reduced the risk of nitrogen and phosphorus release from sediment. BA-PIA was able to make up for the deficiency of the aluminum-based phosphorus-locking agent (Al-PIA) that only removes phosphorus, giving it improved application prospects.


Subject(s)
Aluminum , Water Pollutants, Chemical , Phosphorus , Nitrogen/analysis , Biological Factors , Geologic Sediments , Water Pollutants, Chemical/analysis , Lakes , Water
7.
Environ Sci Pollut Res Int ; 30(13): 35683-35697, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36538231

ABSTRACT

In this study, calcined water treatment plant sludge (C-WTPS) was used as a catalyst for peroxymonosulfate (PMS) activation to simultaneously remove Disperse Blue 56 (DB56) and phosphates. Firstly, the performance of the C-WTPS/PMS system was examined for the degradation of DB56. The results showed that 96.7% of DB56 (400 mg L-1) was removed within 60 min in the presence of 4.8 g L-1 PMS and 0.8 g L-1 C-WTPS at pH 3 and 50 °C. Hydroxyl radicals (·OH), sulfate radicals (SO4·-), and singlet oxygen (1O2) were generated during the oxidation process, and 1O2 was the main active species. The relatively high surface area, proper Fe content, and abundant ketone groups on the catalyst surface were responsible for PMS activation. Furthermore, the possible degradation pathways of DB56 were proposed based on the gas chromatography-mass spectrometry (GC-MS) results. Secondly, the simultaneous removal of DB56 and phosphates by the C-WTPS/PMS system was investigated. Due to the different removal mechanisms, the effects of the initial phosphate concentration and water matrix species on the removal of DB56 and phosphates showed different trends. Reusability tests results showed that C-WTPS had relatively high stability. In addition, the C-WTPS/PMS system exhibited a high decolorization ratio and phosphate removal efficiency in real wastewater tests. This article offers a value-added approach for reusing WTPS as a catalyst for treating organic contaminants and phosphates.


Subject(s)
Sewage , Water Purification , Phosphates , Peroxides/chemistry , Water Purification/methods
8.
J Environ Sci (China) ; 127: 187-196, 2023 May.
Article in English | MEDLINE | ID: mdl-36522052

ABSTRACT

In this study, aluminum-based P-inactivation agent (Al-PIA) was used as a high-efficiency microbial carrier, and the biological Al-PIA (BA-PIA) was prepared by artificial aeration. Laboratory static experiments were conducted to study the effect of BA-PIA on reducing nitrogen and phosphorus contents in water. Physicochemical characterization and isotope tracing method were applied to analyze the removal mechanism of nitrogen and phosphorus. High-throughput techniques were used to analyze the characteristic bacterial genus in the BA-PIA system. The nitrogen and phosphorus removal experiment was conducted for 30 days, and the removal rates of NH4+-N, TN and TP by BA-PIA were 81.87%, 66.08% and 87.97%, respectively. The nitrogen removal pathways of BA-PIA were as follows: the nitrification reaction accounted for 59.0% (of which denitrification reaction accounted for 56.4%), microbial assimilation accounted for 18.1%, and the unreacted part accounted for 22.9%. The characteristic bacteria in the BA-PIA system were Streptomyces, Nocardioides, Saccharopolyspora, Nitrosomonas, and Marinobacter. The loading of microorganisms only changed the surface physical properties of Al-PIA (such as specific surface area, pore volume and pore size), without changing its surface chemical properties. The removal mechanism of nitrogen by BA-PIA is the conversion of NH4+-N into NO2--N and NO3--N by nitrifying bacteria, which are then reduced to nitrogen-containing gas by aerobic denitrifying bacteria. The phosphorus removal mechanism is that metal compounds (such as Al) on the surface of BA-PIA fix phosphorus through chemisorption processes, such as ligand exchange. Therefore, BA-PIA overcomes the deficiency of Al-PIA with only phosphorus removal ability, and has better application prospects.


Subject(s)
Nitrogen , Phosphorus , Phosphorus/metabolism , Nitrogen/metabolism , Denitrification , Aluminum , Bioreactors/microbiology , Sewage/chemistry , Biological Factors/metabolism , Nitrification , Bacteria/metabolism , Waste Disposal, Fluid
9.
Front Nutr ; 9: 979609, 2022.
Article in English | MEDLINE | ID: mdl-36324623

ABSTRACT

To investigate the feasibility of steam explosion on the exploitation of ruminant feedstuff, the morphological structure, carbohydrate-protein fractions, and rumen fermentation profile of five typical crop byproducts (corn cob, rice straw, peanut shell, millet stalk, and sugarcane tip) were analyzed before and after steam explosion processing. The results showed that these crop byproducts had different physicochemical properties and rumen fermentation profiles, most of which could be improved by steam explosion processing, i.e., more rough morphological surface, much-broken structure, more digestible carbohydrate fraction (non-NDF +49.92-452.24%), faster gas production rate (c +9.72-68.75%), higher dry matter digestibility (DMD48 +11.38-47.36%), more available energy (ME -3.69-+42.13%, except for peanut shell), along with more unavailable protein fraction (ADICP +27.16-102.70%). It is suggested that steam explosion processing could intensify the feeding value of most crop byproducts for ruminants, but with a caution of heat damage to proteins.

10.
Front Nutr ; 9: 927206, 2022.
Article in English | MEDLINE | ID: mdl-35911107

ABSTRACT

Changes in dietary composition affect the rumen microbiota in ruminants. However, information on the effects of dietary concentrate-to-forage ratio changes on yak rumen bacteria and metabolites is limited. This study characterized the effect of three different dietary concentrate-to-forage ratios (50:50, C50 group; 65:35, C65 group; 80:20, C80 group) on yak rumen fluid microbiota and metabolites using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) analyses. Rumen fermentation parameters and the abundance of rumen bacteria were affected by changes in the dietary concentrate-to-forage ratio, and there was a strong correlation between them. At the genus level, higher relative abundances of norank_f__F082, NK4A214_group, Lachnospiraceae_NK3A20_group, Acetitomaculum, and norank_f__norank_o__Clostridia_UCG-014 were observed with a high dietary concentrate-to-forage ratio (P < 0.05). Combined metabolomic and enrichment analyses showed that changes in the dietary concentrate-to-forage ratio significantly affected rumen metabolites related to amino acid metabolism, protein digestion and absorption, carbohydrate metabolism, lipid metabolism, and purine metabolism. Compared with the C50 group, 3-methylindole, pantothenic acid, D-pantothenic acid, and 20-hydroxy-leukotriene E4 were downregulated in the C65 group, while spermine and ribose 1-phosphate were upregulated. Compared to the C50 group, Xanthurenic acid, tyramine, ascorbic acid, D-glucuronic acid, 6-keto-prostaglandin F1a, lipoxin B4, and deoxyadenosine monophosphate were upregulated in the C80 group, while 3-methylindole and 20-hydroxy-leukotriene E4 were downregulated. All metabolites (Xanthurenic acid, L-Valine, N-Acetyl-L-glutamate 5-semialdehyde, N-Acetyl-L-glutamic acid, Tyramine, 6-Keto-prostaglandin F1a, Lipoxin B4, Xanthosine, Thymine, Deoxyinosine, and Uric acid) were upregulated in the C80 group compared with the C65 group. Correlation analysis of microorganisms and metabolites provided new insights into the function of rumen bacteria, as well as a theoretical basis for formulating more scientifically appropriate feeding strategies for yak.

11.
Front Microbiol ; 13: 862151, 2022.
Article in English | MEDLINE | ID: mdl-35531283

ABSTRACT

The gastrointestinal tract (GIT) contains complex microbial communities and plays an essential role in the overall health of the host. Previous studies of beef cattle feed efficiency have primarily concentrated on the ruminal microbiota because it plays a key role in energy production and nutrient supply in the host. Although the small intestine is the important site of post-ruminal digestion and absorption of nutrients, only a few studies have explored the relationship between the microbial populations in the small intestine and feed efficiency. Moreover, variations in GIT metabolites contribute to differences in feed efficiency. The objective of this study was to investigate relationships among bacterial populations of duodenum, jejunum, ileum; microbial metabolites; and RFI phenotype of beef cattle. We carried out by using Illumina MiSeq sequencing of the 16S rRNA V3-V4 region and liquid chromatography-mass spectrometry (LC-MS). In the duodenum, the relative abundances of Firmicutes ( p < 0.01), Lachnospiraceae, Ruminococcaceae, Family_XIII, Christensenellaceae, Christensenellaceae_R-7_group ( p < 0.05), and Lachnospiraceae_NK3A20_group ( p < 0.05) were higher in the low residual feed intake (LRFI) group compared with the high residual feed intake (HRFI) group, whereas the HRFI group had higher abundances of Proteobacteria and Acinetobacter ( p < 0.01). In the jejunum, the relative abundances of Lachnospiraceae and Lachnospiraceae_NK3A20_group were higher in the LRFI group ( p < 0.05). In the ileum, the relative abundances of Ruminococcaceae ( p < 0.01), Christensenellaceae, Christensenellaceae_R-7_group, and Ruminococcus_2 were also higher in the LRFI group ( p < 0.05). Moreover, the genera Lachnospiraceae_NK3A20_group, Christensenellaceae_R-7_group, and Ruminococcus_2 were negatively associated with RFI, while the genus Acinetobacter was positively associated with RFI. The metabolomics analysis revealed that the LRFI group significantly improved protein digestion and absorption, as well as glycerophospholipid metabolism in the duodenum, jejunum, ileum. The correlation between intestinal microorganisms and metabolites revealed that some microorganisms play an important role in amino acid metabolism, glycerophospholipid metabolism, nutrient digestion and absorption, and antioxidant enhancement. The present study provides a better understanding of the small intestinal microbiota and metabolites of beef cattle with different RFI phenotypes and the relationships among them, which are potentially important for the improvement of beef cattle feed efficiency.

12.
Front Vet Sci ; 9: 812861, 2022.
Article in English | MEDLINE | ID: mdl-35400092

ABSTRACT

Feed cost is the greatest expense during cattle production; therefore, reducing it is critical to increasing producer profits. In ruminants, the microbial population is important to nutrient digestion and absorption in the rumen. The objective of this study was to investigate the relationships among rumen bacteria, rumen metabolites, and the residual feed intake (RFI) phenotype of beef cattle. Twelve Angus heifers were selected to be sampled and divided into high RFI (HRFI; n = 6) group and low RFI (LRFI; n = 6) group according to their RFI classification determined during the feedlot-finishing period. After the ruminal liquid samples were collected at slaughter, Illumina MiSeq sequencing of the 16S rRNA V3-V4 region and liquid chromatography-mass spectrometry (LC-MS) were performed to determine their bacterial composition and metabolites, respectively. At the phylum level, the relative abundance of Proteobacteria was higher in the LRFI group than in the HRFI group (P < 0.01). At the family level, the relative abundances of Rikenellaceae (P < 0.01), Ruminococcaceae, Bacteroidales_S24-7_group, and Lachnospiraceae (P < 0.05) were significantly higher in the LRFI group. At the genus level, the relative abundances of Rikenellaceae_RC9_gut_group and Ruminiclostridium_1 were higher in the LRFI group (P < 0.01), as were the relative abundances of norank_f__Bacteroidales_S24-7_group, Lachnospiraceae_ND3007_group, and Lachnospiraceae_NK3A20_group (P < 0.05). Moreover, the genera Rikenellaceae_RC9_gut_group, Ruminococcaceae_NK4A214_group, Christensenellaceae_R-7_group, Ruminococcaceae_UCG-010, Lachnospiraceae_ND3007_group, Ruminiclostridium_1, and Lachnospiraceae_NK3A20_group were negatively associated with the RFI; both foundational and key species are associated with feed efficiency phenotype. In addition, rumen metabolomics analysis revealed that the RFI was associated with significantly altered concentrations of rumen metabolites involved in protein digestion and absorption, Linoleic acid metabolism, Lysine degradation, and Fatty acid degradation. Correlation analysis revealed the potential relationships between the significantly differential ruminal metabolites and the genera ruminal bacteria. The present study provides a better understanding of rumen bacteria and metabolites of beef cattle with different RFI phenotypes and the relationships among them, which are potentially important for the improvement of beef cattle feed efficiency.

13.
Environ Sci Pollut Res Int ; 29(11): 16427-16435, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34651265

ABSTRACT

In this article, dynamic simulation experiments have studied the effects of three capping materials, quartz sand (QS), aluminum-based phosphorus-locking agent (Al-PIA), and lanthanum-modified bentonite (LMB) in reducing phosphorus load in eutrophic water bodies. The changes of various forms of phosphorus in Al-PIA and sediment before and after the test were analyzed, and the mechanism of phosphorus migration and transformation in different capping systems was described. The dynamic simulation test lasted 95 days. The results showed that when the initial concentration of total phosphorus (TP) was 3.55 mg/L, the capping strength was 2 kg/m2 and the hydraulic retention time of water circulation was 0.5 days, indicating that the average reduction rates of TP by LMB, Al-PIA and QS systems were 74.66%, 69.54%, and 3.64%, respectively, compared with the control system. The analysis of variance showed that there were significant differences (P < 0.05) in the TP concentration of the overlying water between the LMB, Al-PIA capping system, and the control system. Lanthanum ions in LMB can fix phosphorus. Al-PIA reduces the phosphorus concentration in water by means of ion exchange, adsorption, complexation, etc. LMB and Al-PIA promoted the migration of phosphorus in sediment. Among them, the phosphorus fixed by Al-PIA was mainly in the form of non-apatite inorganic phosphorus (NAIP) in inorganic phosphorus (IP), which can be seen; Al-PIA can effectively reduce the phosphorus load of eutrophic water.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Eutrophication , Geologic Sediments , Lakes , Water , Water Pollutants, Chemical/analysis
14.
Front Vet Sci ; 9: 1027967, 2022.
Article in English | MEDLINE | ID: mdl-36619966

ABSTRACT

With diversification of yak breeding, it is important to understand the effects of feed type on the rumen, especially microbiota and metabolites. Due to the unique characteristics of yak, research on rumen microbes and metabolites is limited. In this study, the effects of two diet types on rumen eukaryotic microflora and metabolites were evaluated using the Illumina MiSeq platform and liquid chromatography-mass spectrometry (LC-MS). All identified protozoa belonged to Trichostomatia. At the genus level, the relative abundance of Metadinium and Eudiplodinium were significantly (p < 0.05) higher in the roughage group than that of concentrate group, while the concentrate group harbored more Isotricha. Ascomycota, Basidiomycota, and Neocallimastigomycota were the main fungal phyla, and the Wallemia, Chordomyces, Chrysosporium, Cladosporium, Scopulariopsis, and Acremonium genera were significantly (p < 0.05) more abundant in the roughage group than the concentrate group, while the concentrate group harbored more Aspergillus, Neocallimastix, Thermoascus, and Cystofilobasidium (p < 0.05). Metabolomics analysis showed that feed type significantly affected the metabolites of rumen protein digestion and absorption (L-proline, L-phenylalanine, L-tryosine, L-leucine, L-tryptophan, and ß-alanine), purine metabolism (hypoxanthine, xanthine, guanine, guanosine, adenosine, and adenine), and other metabolic pathway. Correlation analysis revealed extensive associations between differential microorganisms and important metabolites. The results provide a basis for comprehensively understanding the effects of feed types on rumen microorganisms and metabolites of yaks. The findings also provide a reference and new directions for future research.

15.
Animals (Basel) ; 11(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34573510

ABSTRACT

These experiments were conducted to evaluate the effect of excessive sulfur on rumen fermentation, microflora, and epithelial barrier function in steers through in vitro gas production and animal feeding experiments. Nine and four levels of sulfur addition were evaluated in in vitro ruminal fermentation and animal feeding experiment, respectively. The results showed that increasing the level of sulfur in substrates decreased the total gas and methane production linearly, while increasing the production of hydrogen sulfide gas (p < 0.01). Volatile fatty acid concentrations, especially that of butyric acid, were increased by extra sulfur (p < 0.01). Sulfur content in the diet had no significant effect (p > 0.05) on most of the rumen microbes, except for Desulfovibrio, one of the major sulfate-reducing bacteria (SRB) in the rumen, whose population increased by adding extra sulfur (p < 0.001). The changes in the morphology of rumen epithelium and thickening of the total epithelial layer were mainly attributed to the increase in the acanthosis cell layer and stratum basale (p < 0.05). Further, the relative expressions of two tight junction protein regulating genes, CLDN-1 and TJP1, were reduced (p < 0.05). Excessive sulfur in the diet can change the type of rumen fermentation, sulfate metabolism and SRB population, and the rumen epithelial barrier function. The results of this study demonstrated that sulfur can be used as a methane inhibitor with the mechanism that SRB competitively used protons to produce hydrogen sulfide. However, a higher level of sulfur in the diet could increase the inflammatory reaction of the rumen epithelium which may affect nutrient absorption.

16.
Environ Sci Pollut Res Int ; 28(48): 69059-69073, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34286429

ABSTRACT

CuxO/Bi2O3 oxides grown on nickel foam were synthesized via an electrodeposition method to degrade indoor HCHO under visible light irradiation and fully characterized by XRD, SEM, FT-IR, and UV-Vis technologies. The characterization results showed that the CuxO/Bi2O3 oxides were successfully loaded on nickel foam and the visible light response spectrum was expanded to 740 nm. Plackett-Burman design combined with central composite design has been used to optimize factors that affect HCHO removal performance. The results demonstrated that bismuth nitrate content, polyethylene glycol 600 content, sintering time, and lactic acid concentration were the four most important factors affecting the HCHO removal performance over CuxO/Bi2O3 sample. The optimum CuxO/Bi2O3 sample could degrade 88.796% of HCHO in 300 min at the conditions of 4.28 mol/L lactic acid, 4.86% polyethylene glycol 600, 194.03 min sintering time, and 45.83 g bismuth nitrate, and the HCHO removal rate remained 82.3% after five cycles. A plausible mechanism for the degradation of HCHO under visible light irradiation was proposed. This work provides a feasible solution for removing indoor formaldehyde in the field of photocatalysis.


Subject(s)
Light , Oxides , Catalysis , Formaldehyde , Spectroscopy, Fourier Transform Infrared
17.
Animals (Basel) ; 11(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071355

ABSTRACT

This study was designed to evaluate the effect of hybrid type on the fermentation and nutritional parameters of whole-plant corn silage (dual-purpose and silage-specific corn). For this purpose, the two corn hybrid types were harvested at the one-half to three-fourths milk line and ensiled in fermentation bags (50 × 80 cm) for 60 day. Our results demonstrated that the ratio of lactic acid to acetic acid (p = 0.004), propionic acid (p < 0.001), Flieg point (p < 0.001), ether extract (p = 0.039), starch (p < 0.001), milk-per-ton index (p < 0.005), net energy for lactation (p = 0.003), total digestible nutrients (p < 0.001), neutral detergent soluble fiber (p =0.04), and in situ dry matter digestibility (TDMDis) (p < 0.001) were higher in dual-purpose corn silage, while the pH (p = 0.014), acetic acid (p = 0.007), the ratio of ammonia nitrogen to total nitrogen (p = 0.045), neutral detergent fiber (p < 0.001), acid detergent fiber (p < 0.001), acid detergent lignin (p < 0.001), dry matter yield per ha (p < 0.001), milk-per-acre index (p = 0.003), available neutral detergent fiber (p < 0.001), and unavailable neutral detergent fiber (p < 0.001) were higher in silage-specific corn silage. Based on our analysis, we concluded that under favourable production conditions for whole-plant corn silage, the nutritive value per unit was higher in dual-purpose corn while biomass yield and nutrient value per ha were higher in silage-specific corn.

18.
Animals (Basel) ; 11(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071510

ABSTRACT

In Vivo fermentable organic matter (FOM) reflects the energy production and the potential of rumen's microbial protein synthesis. However, the in vivo method with fistulated animals for FOM measurement compromises animal welfare and is laborious as well as expensive. Although the alternative in situ nylon bag technique has been widely used, it is also costly and requires rumen liquor. Therefore, the present study was performed to compare the in situ nylon bag technique with the in vitro neutral detergent cellulase (NDC) method or chemical composition to estimate in vivo FOM of roughages. For this purpose, we selected 12 roughages, including six each from forages and crop residues. Our results have shown the strong correlation equations between FOMin situ and FOMNDC of forages (n = 6; R2 = 0.79), crop residues (n = 6; R2 = 0.80), and roughages (n = 12; R2 = 0.84), respectively. Moreover, there were also strong correlations between the chemical composition of roughages and FOMin situ (n = 12; R2 = 0.84-0.93) or FOMNDC (n = 12; R2 = 0.79-0.89). In conclusion, the in vitro NDC method and chemical composition were alternatives to in situ nylon bag technique for predicting in vivo FOM of roughages in the current experiment.

19.
Ecotoxicol Environ Saf ; 217: 112274, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33930771

ABSTRACT

Canonical ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and complete-nitrifying bacteria (comammox) exist in a variety of ecosystems. However, little is known about AOA, AOB and comammox or their contributions to nitrification in the soils of heavily degraded and acidic mine regions. In the present study, the activity, richness, diversity and distribution patterns of AOA, AOB and comammox in the Siding mine area were investigated. Nemerow's multifactor pollution index (PN) values indicated that the soil in all three areas in the Siding mine area was highly contaminated by Cd, Pb, Zn, Mn and Cu. The AOA, AOB and comammox amoA gene copy numbers exhibited significant positive correlations with Pb and Zn levels and PN values, which indicated that the populations of AOA, AOB and comammox underwent adaptation and reproduction in response to pollution from multiple metals in the Siding mine area. Among them, the abundance of AOA was the highest, and AOA may survive better than AOB and comammox under such severely pollution-stressed and ammonia-limited conditions. The phyla Thaumarchaeota and Crenarchaeota may play vital roles in the soil ammonia oxidation process. Unlike AOA, AOB may use soil available phosphorus to help them compete for NH3 and other limiting nutrients with AOA and heterotrophs. Moreover, soil organic matter was the main factor influencing the species diversity of AOB, the ß-diversity of AOB and comammox, and the community composition of AOA, AOB and comammox. Our research will help to explain the role and importance of AOA, AOB and comammox in the different ecological restoration regions in the Siding mine area.


Subject(s)
Ammonia/metabolism , Biodegradation, Environmental , Mining , Soil Microbiology , Archaea/metabolism , Bacteria/metabolism , Betaproteobacteria/metabolism , Biodiversity , Ecosystem , Nitrification , Oxidation-Reduction , Phosphorus/metabolism , Phylogeny , Soil , Soil Pollutants
20.
Environ Sci Pollut Res Int ; 28(14): 18062-18069, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33410060

ABSTRACT

It is well-known that the activated thin-layer capping covering by secondary capping of contaminated sediment poses a threat to the inactivation of activated material. In this study, the static simulation experiment was conducted to study the effect of secondary capping thickness by sediment on the control of TP release from the sediment by aluminum-based P-inactivation agent (Al-PIA), and to propose the phosphorus adsorption pathway of Al-PIA. The results showed that Al-PIA could effectively reduce the release of phosphorus pollutants from the sediment at the capping intensity of 2 kg/m2. When the secondary capping thickness of sediment were 0, 2, 4, 7, 10, and 15 mm, the average removal rates of TP were 87.57%, 76.39%, 61.22%, 51.32%, 41.93%, and 32.11%, respectively, indicating that the removal efficiency of phosphorus decreased with the increase of the secondary capping thickness of the sediment. The adsorbed phosphorus by Al-PIA was mainly non-apatite inorganic phosphorus (NAIP) in inorganic phosphorus. With the increase of the secondary capping thickness of sediment, the NAIP proportion of phosphorus adsorbed by Al-PIA increased. Meanwhile, the removal rate of phosphorus in the activated capping system showed a first increase and then decrease trend, and the removal rates of total phosphorus (TP), inorganic phosphorus (IP), and organic phosphorus (OP) were obvious except for that of organic phosphorus (OP).


Subject(s)
Phosphorus , Water Pollutants, Chemical , Adsorption , Aluminum , Geologic Sediments , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...