Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Int Immunopharmacol ; 133: 112126, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38669946

ABSTRACT

Type 17 helper T cells (Th17)-dominant neutrophilic airway inflammation is critical in the pathogenesis of steroid-resistant airway inflammation such as severe asthma. Small extracellular vesicles (sEV) derived from human mesenchymal stem cells (MSCs) display extensive therapeutic effects and advantages in many diseases. However, the role of MSC-sEV in Th17-dominant neutrophilic airway inflammation and the related mechanisms are still poorly studied. Here we found that MSC-sEV significantly alleviated the infiltration of inflammatory cells in peribronchial interstitial tissues and reduced levels of inflammatory cells, especially neutrophils, in bronchoalveolar lavage fluids (BALF) of mice with neutrophilic airway inflammation. Consistently, MSC-sEV significantly decreased levels of IL-17A in BALF and Th17 in lung tissues. Furthermore, we found that labelled MSC-sEV were taken up by human CD4+ T cells most obviously at 12 h after incubation, and distributed mostly in mouse lungs. More importantly, potential signaling pathways involved in the MSC-sEV mediated inhibition of Th17 polarization were found using RNA sequencing. Using Western blot, JAK2-STAT3 pathway was identified as an important role in the inhibition of Th17 polarization by MSC-sEV. We found that proteins in MSC-sEV were mostly involved in the therapeutic effects of MSC-sEV. In total, our study suggested that MSC-sEV could be a potential therapeutic strategy for the treatment of neutrophilic airway inflammation.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Neutrophils , STAT3 Transcription Factor , Th17 Cells , Th17 Cells/immunology , Humans , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Mice , Neutrophils/immunology , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Interleukin-17/metabolism , Lung/immunology , Lung/pathology , Mice, Inbred C57BL , Cells, Cultured , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Asthma/immunology , Asthma/therapy , Male , Signal Transduction , Female , Disease Models, Animal
4.
Stem Cell Res Ther ; 14(1): 180, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488601

ABSTRACT

BACKGROUND: Mesenchymal stromal cells-derived small extracellular vesicles (MSC-sEVs) have recently attracted considerable attention because of their therapeutic potential in various immune diseases. We previously reported that MSC-sEVs could exert immunomodulatory roles in allergic airway inflammation by regulating group 2 innate lymphoid cell (ILC2) and dendritic cell (DC) functions. Therefore, this study aimed to investigate the indirect effects of MSC-sEVs on ILC2s from patients with allergic rhinitis (AR) via DCs. METHODS: Here, we isolated sEVs from induced pluripotent stem cells-MSCs using anion-exchange chromatography and mature DCs (mDCs) were treated with MSC-sEVs. sEV-mDCs were co-cultured with peripheral blood mononuclear cells from patients with AR or purified ILC2s. The levels of IL-13 and GATA3 in ILC2s were examined by flow cytometry. Bulk RNA sequence for mDCs and sEV-mDCs was employed to further probe the potential mechanisms, which were then validated in the co-culture systems. RESULTS: sEV-mDCs showed impaired capacity in priming the levels of IL-13 and GATA3 in ILC2s when compared with mDCs. Furthermore, there was higher PGE2 and IL-10 production from sEV-mDCs, and the blockade of them especially the former one reversed the inhibitory effects of sEV-mDCs. CONCLUSIONS: We demonstrated that MSC-sEVs were able to dampen the activating effects of mDCs on ILC2s in patients with AR. Mechanismly, the PGE2-EP2/4 axis played an essential role in the immunomodulatory effects of sEV-mDCs on ILC2s. Herein, we provided new insights into the mechanism underlying the therapeutic effects of MSC-sEVs in allergic airway inflammation.


Subject(s)
Extracellular Vesicles , Rhinitis, Allergic , Humans , Immunity, Innate , Dinoprostone , Interleukin-13 , Leukocytes, Mononuclear , Lymphocytes , Inflammation , Dendritic Cells
5.
Front Immunol ; 12: 710372, 2021.
Article in English | MEDLINE | ID: mdl-34691024

ABSTRACT

Background: Allergic rhinitis (AR) is characterized by IgE-mediated mucosa response after exposure to allergens. Extracellular vesicles (EVs) are nano-size vesicles containing biological cargos for intercellular communications. However, the role of plasma EVs in pathogenesis of AR remains largely unknown. Methods: Plasma EVs from patients with AR were isolated, quantified, and characterized. The expression of Der p 1 and antigen-presenting molecules on EVs was determined by Western blot, flow cytometry, or ELISA. PKH26- and CFSE (carboxyfluorescein succinimidyl ester)-stained AR-EVs were used to determine the uptake of EVs by CD4+T cells and their effects on CD4+T cell proliferation, respectively. Results: Plasma EVs in healthy control (HC) and AR patients were similar in the concentration of particles, expression for specific EV markers, and both had structural lipid bilayer. However, the levels of Der p 1 on plasma EVs from both mild and moderate-severe AR patients were significantly higher than that on HC. The levels of antigen-presenting molecules on plasma EVs were similar from three subjects. Moreover, levels of Der p 1 on EVs in plasma, but not nasal secretion, were significantly associated with the symptom score of AR patients and level of plasma IL-13. Additionally, plasma EVs from patients with AR promoted the development of Th2 cells, while no effect was found on CD4+ T-cell proliferation. Conclusions: Plasma EVs derived from patients with AR exhibited antigen-presenting characteristics and promoted differentiation of Th2 cells, thus providing novel understanding of the pathogenesis of AR.


Subject(s)
Antigen Presentation/immunology , Extracellular Vesicles/immunology , Rhinitis, Allergic/immunology , Th2 Cells/cytology , Adult , Antigens, Dermatophagoides/blood , Arthropod Proteins/blood , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Cysteine Endopeptidases/blood , Female , Humans , Male , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...