Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
2.
Cell Death Differ ; 31(4): 387-404, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521844

ABSTRACT

The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.


Subject(s)
Cytochromes c , Humans , Cytochromes c/metabolism , Animals , Cell Death , Apoptosis , Nucleophosmin , Mitochondria/metabolism , Protein Processing, Post-Translational , Neoplasms/metabolism , Neoplasms/pathology
3.
Nat Neurosci ; 27(2): 272-285, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38172439

ABSTRACT

The central mechanisms underlying pain chronicity remain elusive. Here, we identify a reciprocal neuronal circuit in mice between the anterior cingulate cortex (ACC) and the ventral tegmental area (VTA) that mediates mutual exacerbation between hyperalgesia and allodynia and their emotional consequences and, thereby, the chronicity of neuropathic pain. ACC glutamatergic neurons (ACCGlu) projecting to the VTA indirectly inhibit dopaminergic neurons (VTADA) by activating local GABAergic interneurons (VTAGABA), and this effect is reinforced after nerve injury. VTADA neurons in turn project to the ACC and synapse to the initial ACCGlu neurons to convey feedback information from emotional changes. Thus, an ACCGlu-VTAGABA-VTADA-ACCGlu positive-feedback loop mediates the progression to and maintenance of persistent pain and comorbid anxiodepressive-like behavior. Disruption of this feedback loop relieves hyperalgesia and anxiodepressive-like behavior in a mouse model of neuropathic pain, both acutely and in the long term.


Subject(s)
Neuralgia , Ventral Tegmental Area , Mice , Animals , Gyrus Cinguli , Hyperalgesia , Feedback , Dopaminergic Neurons/physiology , gamma-Aminobutyric Acid
4.
Sci Transl Med ; 15(720): eadg3049, 2023 11.
Article in English | MEDLINE | ID: mdl-37910602

ABSTRACT

Lipid peroxidation-dependent ferroptosis has become an emerging strategy for tumor therapy. However, current strategies not only selectively induce ferroptosis in malignant cells but also trigger ferroptosis in immune cells simultaneously, which can compromise anti-tumor immunity. Here, we used In-Cell Western assays combined with an unbiased drug screening to identify the compound N6F11 as a ferroptosis inducer that triggered the degradation of glutathione peroxidase 4 (GPX4), a key ferroptosis repressor, specifically in cancer cells. N6F11 did not cause the degradation of GPX4 in immune cells, including dendritic, T, natural killer, and neutrophil cells. Mechanistically, N6F11 bound to the RING domain of E3 ubiquitin ligase tripartite motif containing 25 (TRIM25) in cancer cells to trigger TRIM25-mediated K48-linked ubiquitination of GPX4, resulting in its proteasomal degradation. Functionally, N6F11 treatment caused ferroptotic cancer cell death that initiated HMGB1-dependent antitumor immunity mediated by CD8+ T cells. N6F11 also sensitized immune checkpoint blockade that targeted CD274/PD-L1 in advanced cancer models, including genetically engineered mouse models of pancreatic cancer driven by KRAS and TP53 mutations. These findings may establish a safe and efficient strategy to boost ferroptosis-driven antitumor immunity.


Subject(s)
Ferroptosis , Pancreatic Neoplasms , Animals , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Ferroptosis/genetics , CD8-Positive T-Lymphocytes/metabolism , Pancreatic Neoplasms/pathology , Immunity , Pancreatic Neoplasms
5.
Nat Commun ; 14(1): 1568, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36944634

ABSTRACT

As a central part of the mammalian brain, the prefrontal cortex (PFC) has been implicated in regulating cocaine-induced behaviors including compulsive seeking and reinstatement. Although dysfunction of the PFC has been reported in animal and human users with chronic cocaine abuse, less is known about how the PFC is involved in cocaine-induced behaviors. By using two-photon Ca2+ imaging to simultaneously record tens of intact individual networking neurons in the frontal association cortex (FrA) in awake male mice, here we report that a systematic acute cocaine exposure decreased the FrA neural activity in mice, while the chemogenetic intervention blocked the cocaine-induced locomotor sensitization. The hypoactivity of FrA neurons was critically dependent on both dopamine transporters and dopamine transmission in the ventromedial PFC (vmPFC). Both dopamine D1R and D2R neurons in the vmPFC projected to and innervated FrA neurons, the manipulation of which changed the cocaine-induced hypoactivity of the FrA and locomotor sensitization. Together, this work demonstrates acute cocaine-induced hypoactivity of FrA neurons in awake mice, which defines a cortico-cortical projection bridging dopamine transmission and cocaine sensitization.


Subject(s)
Cocaine-Related Disorders , Cocaine , Humans , Mice , Male , Animals , Cocaine/pharmacology , Dopamine/metabolism , Dopamine Uptake Inhibitors/pharmacology , Brain/metabolism , Prefrontal Cortex/physiology , Mammals/metabolism
6.
Autophagy ; 19(1): 54-74, 2023 01.
Article in English | MEDLINE | ID: mdl-35403545

ABSTRACT

Selective macroautophagy/autophagy maintains cellular homeostasis through the lysosomal degradation of specific cellular proteins or organelles. The pro-survival effect of selective autophagy has been well-characterized, but the mechanism by which it drives cell death is still poorly understood. Here, we use a quantitative proteomic approach to identify HPCAL1 (hippocalcin like 1) as a novel autophagy receptor for the selective degradation of CDH2 (cadherin 2) during ferroptosis. HPCAL1-dependent CDH2 depletion increases susceptibility to ferroptotic death by reducing membrane tension and favoring lipid peroxidation. Site-directed mutagenesis aided by bioinformatic analyses revealed that the autophagic degradation of CDH2 requires PRKCQ (protein kinase C theta)-mediated HPCAL1 phosphorylation on Thr149, as well as a non-classical LC3-interacting region motif located between amino acids 46-51. An unbiased drug screening campaign involving 4208 small molecule compounds led to the identification of a ferroptosis inhibitor that suppressed HPCAL1 expression. The genetic or pharmacological inhibition of HPCAL1 prevented ferroptosis-induced tumor suppression and pancreatitis in suitable mouse models. These findings provide a framework for understanding how selective autophagy promotes ferroptotic cell death.Abbreviations: ANXA7: annexin A7; ARNTL: aryl hydrocarbon receptor nuclear translocator like; CCK8: cell counting kit-8; CDH2: cadherin 2; CETSAs: cellular thermal shift assays; CPT2: carnitine palmitoyltransferase 2; DAMP, danger/damage-associated molecular pattern; DPPH: 2,2-diphenyl-1-picrylhydrazyl; DFO: deferoxamine; EBNA1BP2: EBNA1 binding protein 2; EIF4G1: eukaryotic translation initiation factor 4 gamma 1; FBL: fibrillarin; FKBP1A: FKBP prolyl isomerase 1A; FTH1: ferritin heavy chain 1; GPX4: glutathione peroxidase 4; GSDMs: gasdermins; HBSS: Hanks' buffered salt solution; HMGB1: high mobility group box 1; HNRNPUL1: heterogeneous nuclear ribonucleoprotein U like 1; HPCAL1: hippocalcin like 1; H1-3/HIST1H1D: H1.3 linker histone, cluster member; IKE: imidazole ketone erastin; KD: knockdown; LDH: lactate dehydrogenase; LIR: LC3-interacting region; MAGOH: mago homolog, exon junction complex subunit; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MDA: malondialdehyde; MLKL: mixed lineage kinase domain like pseudokinase; MPO: myeloperoxidase; MTOR: mechanistic target of rapamycin kinase; OE: overexpressing; OSTM1: osteoclastogenesis associated transmembrane protein 1; PRKC/PKC: protein kinase C; PRKAR1A: protein kinase cAMP-dependent type I regulatory subunit alpha; PRDX3: peroxiredoxin 3; PTGS2: prostaglandin-endoperoxide synthase 2; ROS: reactive oxygen species; SLC7A11: solute carrier family 7 member 11; SLC40A1: solute carrier family 40 member 1; SPTAN1: spectrin alpha, non-erythrocytic 1; STS: staurosporine; UBE2M: ubiquitin conjugating enzyme E2 M; ZYX: zyxin.


Subject(s)
Autophagy , Ferroptosis , Mice , Animals , Autophagy/physiology , Hippocalcin/pharmacology , Proteomics , Cell Death
7.
Biomolecules ; 12(12)2022 12 06.
Article in English | MEDLINE | ID: mdl-36551253

ABSTRACT

Regulated cell death (RCD) is a signal-controlled process that not only eliminates infected, damaged, or aged cells but is also implicated in a variety of pathological conditions. The process of RCD is regulated by intracellular proteins that undergo varying levels of post-translational modifications, including mono- or polyubiquitination. Functionally, ubiquitination can affect protein abundance, localization, and activity. Like other post-translational modifications, ubiquitination is a dynamic and reversible process mediated by deubiquitinases, a large class of proteases that cleave ubiquitin from proteins and other substrates. The balance between ubiquitination and deubiquitination machinery determines cell fate under stressful conditions. Here, we review the latest advances in our understanding of the role of deubiquitinases in regulating the main types of RCD, including apoptosis, necroptosis, pyroptosis, and ferroptosis. This knowledge may contribute to identifying new protein degradation-related prognostic markers and therapeutic targets for human disease.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin , Aged , Humans , Cell Death , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
8.
Am J Cancer Res ; 12(10): 4825-4839, 2022.
Article in English | MEDLINE | ID: mdl-36381313

ABSTRACT

Glioblastoma (GBM) is the most frequently observed and aggressive type of high-grade malignant glioma. Temozolomide (TMZ) is the primary agent for GBM treatment. However, TMZ resistance remains a major challenge. In this study, we report that MDK is overexpressed in GBM, which leads to enhanced proliferation, apoptosis inhibition, increased invasion and TMZ resistance in GBM cells. It was also determined that MDK could significantly improve the stem-like properties of GBM cells. Mechanistically, MDK enhanced p-JNK through Notch1 and subsequently increased the expression of stemness markers, such as CD133 and Nanog, thereby promoting TMZ resistance. Finally, xenograft experiments and clinical sample analysis also demonstrated that MDK knockdown could significantly inhibit tumor growth in vivo, and the expression of MDK was positively correlated with Notch1, p-JNK and CD133. This study revealed that MDK induces TMZ resistance by improving the stem-like properties of GBM by upregulating the Notch1/p-JNK signaling pathway, which provides a possible target for therapeutic intervention of GBM, especially in TMZ-resistant GBM with high MDK expression.

9.
Oncoimmunology ; 11(1): 2141978, 2022.
Article in English | MEDLINE | ID: mdl-36338145

ABSTRACT

The covalent KRAS-G12C inhibitors (G12Ci) are rapidly changing the treatment landscape for advanced non-small cell lung cancer, but drug resistance remains a clinical challenge. Two recent studies have developed bispecific T cell engagers that form a link between T cells and tumor cells to selectively eliminate G12Ci-resistant cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Mutation , T-Lymphocytes
10.
Nat Commun ; 13(1): 6318, 2022 10 23.
Article in English | MEDLINE | ID: mdl-36274088

ABSTRACT

Ferroptosis is a type of lipid peroxidation-dependent cell death that is emerging as a therapeutic target for cancer. However, the mechanisms of ferroptosis during the generation and detoxification of lipid peroxidation products remain rather poorly defined. Here, we report an unexpected role for the eukaryotic translation initiation factor EIF4E as a determinant of ferroptotic sensitivity by controlling lipid peroxidation. A drug screening identified 4EGI-1 and 4E1RCat (previously known as EIF4E-EIF4G1 interaction inhibitors) as powerful inhibitors of ferroptosis. Genetic and functional studies showed that EIF4E (but not EIF4G1) promotes ferroptosis in a translation-independent manner. Using mass spectrometry and subsequent protein-protein interaction analysis, we identified EIF4E as an endogenous repressor of ALDH1B1 in mitochondria. ALDH1B1 belongs to the family of aldehyde dehydrogenases and may metabolize the aldehyde substrate 4-hydroxynonenal (4HNE) at high concentrations. Supraphysiological levels of 4HNE triggered ferroptosis, while low concentrations of 4HNE increased the cell susceptibility to classical ferroptosis inducers by activating the NOX1 pathway. Accordingly, EIF4E-dependent ALDH1B1 inhibition enhanced the anticancer activity of ferroptosis inducers in vitro and in vivo. Our results support a key function of EIF4E in orchestrating lipid peroxidation to ignite ferroptosis.


Subject(s)
Eukaryotic Initiation Factor-4E , Ferroptosis , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factors/metabolism , Aldehydes , Oxidoreductases/metabolism , Lipid Peroxidation
11.
EMBO Rep ; 23(11): e54507, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36148511

ABSTRACT

A central principle of synaptic transmission is that action potential-induced presynaptic neurotransmitter release occurs exclusively via Ca2+ -dependent secretion (CDS). The discovery and mechanistic investigations of Ca2+ -independent but voltage-dependent secretion (CiVDS) have demonstrated that the action potential per se is sufficient to trigger neurotransmission in the somata of primary sensory and sympathetic neurons in mammals. One key question remains, however, whether CiVDS contributes to central synaptic transmission. Here, we report, in the central transmission from presynaptic (dorsal root ganglion) to postsynaptic (spinal dorsal horn) neurons in vitro, (i) excitatory postsynaptic currents (EPSCs) are mediated by glutamate transmission through both CiVDS (up to 87%) and CDS; (ii) CiVDS-mediated EPSCs are independent of extracellular and intracellular Ca2+ ; (iii) CiVDS is faster than CDS in vesicle recycling with much less short-term depression; (iv) the fusion machinery of CiVDS includes Cav2.2 (voltage sensor) and SNARE (fusion pore). Together, an essential component of activity-induced EPSCs is mediated by CiVDS in a central synapse.


Subject(s)
Ganglia, Spinal , Posterior Horn Cells , Animals , Posterior Horn Cells/physiology , Synaptic Transmission/physiology , Excitatory Postsynaptic Potentials/physiology , Synapses , Mammals
12.
Cell Rep ; 40(7): 111199, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35977516

ABSTRACT

The norepinephrine neurons in locus coeruleus (LC-NE neurons) are essential for sleep arousal, pain sensation, and cocaine addiction. According to previous studies, cocaine increases NE overflow (the profile of extracellular NE level in response to stimulation) by blocking the NE reuptake. NE overflow is determined by NE release via exocytosis and reuptake through NE transporter (NET). However, whether cocaine directly affects vesicular NE release has not been directly tested. By recording quantal NE release from LC-NE neurons, we report that cocaine directly increases the frequency of quantal NE release through regulation of NET and downstream protein kinase C (PKC) signaling, and this facilitation of NE release modulates the activity of LC-NE neurons and cocaine-induced stimulant behavior. Thus, these findings expand the repertoire of mechanisms underlying the effects of cocaine on NE (pro-release and anti-reuptake), demonstrate NET as a release enhancer in LC-NE neurons, and provide potential sites for treatment of cocaine addiction.


Subject(s)
Cocaine-Related Disorders , Cocaine , Cocaine/pharmacology , Cocaine-Related Disorders/metabolism , Humans , Locus Coeruleus/metabolism , Neurons/metabolism , Norepinephrine/metabolism , Norepinephrine/pharmacology
13.
Neuron ; 110(18): 2984-2999.e8, 2022 09 21.
Article in English | MEDLINE | ID: mdl-35963237

ABSTRACT

Adult brain activities are generally believed to be dominated by chemical and electrical transduction mechanisms. However, the importance of mechanotransduction mediated by mechano-gated ion channels in brain functions is less appreciated. Here, we show that the mechano-gated Piezo1 channel is expressed in the exploratory processes of astrocytes and utilizes its mechanosensitivity to mediate mechanically evoked Ca2+ responses and ATP release, establishing Piezo1-mediated mechano-chemo transduction in astrocytes. Piezo1 deletion in astrocytes causes a striking reduction of hippocampal volume and brain weight and severely impaired (but ATP-rescuable) adult neurogenesis in vivo, and it abolishes ATP-dependent potentiation of neural stem cell (NSC) proliferation in vitro. Piezo1-deficient mice show impaired hippocampal long-term potentiation (LTP) and learning and memory behaviors. By contrast, overexpression of Piezo1 in astrocytes sufficiently enhances mechanotransduction, LTP, and learning and memory performance. Thus, astrocytes utilize Piezo1-mediated mechanotransduction mechanisms to robustly regulate adult neurogenesis and cognitive functions, conceptually highlighting the importance of mechanotransduction in brain structure and function.


Subject(s)
Astrocytes , Mechanotransduction, Cellular , Adenosine Triphosphate , Animals , Astrocytes/metabolism , Cognition , Ion Channels/genetics , Ion Channels/metabolism , Mechanotransduction, Cellular/physiology , Mice , Neurogenesis
14.
Adv Sci (Weinh) ; 9(27): e2202263, 2022 09.
Article in English | MEDLINE | ID: mdl-35896896

ABSTRACT

Large dense-core vesicles (LDCVs) are larger in volume than synaptic vesicles, and are filled with multiple neuropeptides, hormones, and neurotransmitters that participate in various physiological processes. However, little is known about the mechanism determining the size of LDCVs. Here, it is reported that secretogranin II (SgII), a vesicle matrix protein, contributes to LDCV size regulation through its liquid-liquid phase separation in neuroendocrine cells. First, SgII undergoes pH-dependent polymerization and the polymerized SgII forms phase droplets with Ca2+ in vitro and in vivo. Further, the Ca2+ -induced SgII droplets recruit reconstituted bio-lipids, mimicking the LDCVs biogenesis. In addition, SgII knockdown leads to significant decrease of the quantal neurotransmitter release by affecting LDCV size, which is differently rescued by SgII truncations with different degrees of phase separation. In conclusion, it is shown that SgII is a unique intravesicular matrix protein undergoing liquid-liquid phase separation, and present novel insights into how SgII determines LDCV size and the quantal neurotransmitter release.


Subject(s)
Neuropeptides , Secretogranin II , Dense Core Vesicles , Hormones , Lipids , Neurotransmitter Agents/metabolism , Secretogranin II/metabolism
15.
Proc Natl Acad Sci U S A ; 119(20): e2111051119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35537054

ABSTRACT

Exocytosis and endocytosis are tightly coupled. In addition to initiating exocytosis, Ca2+ plays critical roles in exocytosis­endocytosis coupling in neurons and nonneuronal cells. Both positive and negative roles of Ca2+ in endocytosis have been reported; however, Ca2+ inhibition in endocytosis remains debatable with unknown mechanisms. Here, we show that synaptotagmin-1 (Syt1), the primary Ca2+ sensor initiating exocytosis, plays bidirectional and opposite roles in exocytosis­endocytosis coupling by promoting slow, small-sized clathrin-mediated endocytosis but inhibiting fast, large-sized bulk endocytosis. Ca2+-binding ability is required for Syt1 to regulate both types of endocytic pathways, the disruption of which leads to inefficient vesicle recycling under mild stimulation and excessive membrane retrieval following intense stimulation. Ca2+-dependent membrane tubulation may explain the opposite endocytic roles of Syt1 and provides a general membrane-remodeling working model for endocytosis determination. Thus, Syt1 is a primary bidirectional Ca2+ sensor facilitating clathrin-mediated endocytosis but clamping bulk endocytosis, probably by manipulating membrane curvature to ensure both efficient and precise coupling of endocytosis to exocytosis.


Subject(s)
Endocytosis , Synaptic Transmission , Synaptotagmin I , Calcium/metabolism , Endocytosis/physiology , Exocytosis/physiology , Neurons/metabolism , Synaptotagmin I/metabolism
16.
Endocrinology ; 163(4)2022 04 01.
Article in English | MEDLINE | ID: mdl-35245349

ABSTRACT

Ductal carcinoma in situ (DCIS) makes up a majority of noninvasive breast cancer cases. DCIS is a neoplastic proliferation of epithelial cells within the ductal structure of the breast. Currently, there is little known about the progression of DCIS to invasive ductal carcinoma (IDC), or the molecular etiology behind each DCIS lesion or grade. The DCIS lesions can be heterogeneous in morphology, genetics, cellular biology, and clinical behavior, posing challenges to our understanding of the molecular mechanisms by which approximately half of all DCIS lesions progress to an invasive status. New strategies that pinpoint molecular mechanisms are necessary to overcome this gap in understanding, which is a barrier to more targeted therapy. In this review, we will discuss the etiological factors associated with DCIS, as well as the complexity of each nuclear grade lesion. Moreover, we will discuss the possible molecular features that lead to progression of DCIS to IDC. We will highlight current therapeutic management and areas for improvement.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Intraductal, Noninfiltrating , Breast , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Carcinoma, Ductal, Breast/pathology , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/therapy , Female , Humans
17.
Acta Pharmacol Sin ; 43(1): 86-95, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33758356

ABSTRACT

Ischemia/reperfusion (I/R) injury is a major cause of acute kidney injury (AKI) in clinic. The activation of NLRP3 inflammasome is associated with inflammation and renal injury in I/R-induced AKI. In the current study we explored the molecular and cellular mechanisms for NLRP3 inflammasome activation following renal I/R. Mice were subjected to I/R renal injury by clamping bilateral renal pedicles. We showed that I/R injury markedly increased caspase-11 expression and the cleavage of pannexin 1 (panx1) in the kidneys accompanied by NLRP3 inflammasome activation evidenced by the activation of caspase-1 and interlukin-1ß (IL-1ß) maturation. In Casp-11-/- mice, I/R-induced panx1 cleavage, NLRP3 inflammasome activation as well as renal functional deterioration and tubular morphological changes were significantly attenuated. In cultured primary tubular cells (PTCs) and NRK-52E cells, hypoxia/reoxygenation (H/R) markedly increased caspase-11 expression, NLRP3 inflammasome activation, IL-1ß maturation and panx1 cleavage. Knockdown of caspase-11 attenuated all those changes; similar effects were observed in PTCs isolated from Casp-11-/- mice. In NRK-52E cells, overexpression of caspase-11 promoted panx1 cleavage; pretreatment with panx1 inhibitor carbenoxolone or knockdown of panx1 significantly attenuated H/R-induced intracellular ATP reduction, extracellular ATP elevation and NLRP3 inflammasome activation without apparent influence on H/R-induced caspase-11 increase; pretreatment with P2X7 receptor inhibitor AZD9056 also attenuated NLRP3 inflammasome activation. The above results demonstrate that the cleavage of panx1 by upregulated caspase-11 is involved in facilitating ATP release and then NLRP3 inflammasome activation in I/R-induced AKI. This study provides new insight into the molecular mechanism of NLRP3 inflammasome activation in AKI.


Subject(s)
Acute Kidney Injury/metabolism , Caspases, Initiator/metabolism , Connexins/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nerve Tissue Proteins/metabolism , Reperfusion Injury/metabolism , Acute Kidney Injury/pathology , Animals , Caspases, Initiator/deficiency , Cells, Cultured , Dose-Response Relationship, Drug , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Structure , Reperfusion Injury/pathology , Structure-Activity Relationship
18.
Cell Death Dis ; 12(4): 344, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795637

ABSTRACT

Studies have indicated that dysfunction of autophagy is involved in the initiation and progression of multiple tumors and their chemoradiotherapy. Epstein-Barr virus (EBV) is a lymphotropic human gamma herpes virus that has been implicated in the pathogenesis of nasopharyngeal carcinoma (NPC). EBV encoded latent membrane protein1 (LMP1) exhibits the properties of a classical oncoprotein. In previous studies, we experimentally demonstrated that LMP1 could increase the radioresistance of NPC. However, how LMP1 contributes to the radioresistance in NPC is still not clear. In the present study, we found that LMP1 could enhance autophagy by upregulating the expression of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3). Knockdown of BNIP3 could increase the apoptosis and decrease the radioresistance mediated by protective autophagy in LMP1-positive NPC cells. The data showed that increased BNIP3 expression is mediated by LMP1 through the ERK/HIF1α signaling axis, and LMP1 promotes the binding of BNIP3 to Beclin1 and competitively reduces the binding of Bcl-2 to Beclin1, thus upregulating autophagy. Furthermore, knockdown of BNIP3 can reduce the radioresistance promoted by protective autophagy in vivo. These data clearly indicated that, through BNIP3, LMP1 induced autophagy, which has a crucial role in the protection of LMP1-positive NPC cells against irradiation. It provides a new basis and potential target for elucidating LMP1-mediated radioresistance.


Subject(s)
Autophagy/physiology , Membrane Proteins/metabolism , Nasopharyngeal Carcinoma/metabolism , Proto-Oncogene Proteins/metabolism , Viral Matrix Proteins/metabolism , Apoptosis/physiology , Cell Line, Tumor , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Gene Expression Regulation, Neoplastic , Herpesvirus 4, Human/metabolism , Humans , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology
19.
Acta Pharmacol Sin ; 42(6): 954-963, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32968210

ABSTRACT

Diabetic nephropathy (DN) is characterized by sterile inflammation with continuous injury and loss of renal inherent parenchyma cells. Podocyte is an essential early injury target in DN. The injury and loss of podocytes are closely associated with proteinuria, the early symptom of renal injury in DN. However, the exact mechanism for podocyte injury and death in DN remains ambiguous. In this study we investigated whether pyroptosis, a newly discovered cell death pathway was involved in DN. Diabetic mice were generated by high-fat diet/STZ injections. We showed that the expression levels of caspase-11 and cleavage of gasdermin D (GSDMD-N) in podocytes were significantly elevated, accompanied by reduced expression of podocyte makers nephrin and podocin, loss and fusion in podocyte foot processes, increased inflammatory cytokines NF-κB, IL-1ß, and IL-18, macrophage infiltration, glomerular matrix expansion and increased urinary albumin to creatinine ratio (UACR). All these changes in diabetic mice were blunted by knockout of caspase-11 or GSDMD. Cultured human and mouse podocytes were treated with high glucose (30 mM), which significantly increased the expression levels of caspase-11 or caspase-4 (the homolog of caspase-11 in human), GSDMD-N, NF-κB, IL-1ß, and IL-18, and decreased the expression of nephrin and podocin. Either caspase-4 or GSDMD knockdown by siRNA significantly blunted these changes. In summary, our results demonstrate that caspase-11/4 and GSDMD-mediated pyroptosis is activated and involved in podocyte loss under hyperglycemia condition and the development of DN.


Subject(s)
Caspases, Initiator/metabolism , Diabetic Nephropathies/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Podocytes/metabolism , Pyroptosis/physiology , Animals , Caspases, Initiator/genetics , Cells, Cultured , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/complications , Diabetic Nephropathies/pathology , Diet, High-Fat , Gene Knockout Techniques , Glucose/pharmacology , Humans , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Intracellular Signaling Peptides and Proteins/genetics , Kidney Glomerulus/pathology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Phosphate-Binding Proteins/genetics , Podocytes/drug effects , Streptozocin
20.
Acta Pharmacol Sin ; 42(3): 436-450, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32647339

ABSTRACT

Acute renal injury (AKI) causes a long-term risk for progressing into chronic kidney disease (CKD) and interstitial fibrosis. Yes-associated protein (YAP), a key transcriptional cofactor in Hippo signaling pathway, shuttles between the cytoplasm and nucleus, which is required for the renal tubular epithelial cells repair in the acute phase of AKI. In this study we investigated the role of YAP during ischemia-reperfusion (IR)-induced AKI to CKD. Mice were subjected to left kidney IR followed by removal of the right kidney on the day before tissue harvests. Mouse shRNA expression adenovirus (Ad-shYAP or Ad-shKLF4) and mouse KLF4 expression adenovirus (Ad-KLF4) were delivered to mice by intrarenal injection on D7 after IR. We showed that the expression and nucleus distribution of YAP were persistently increased until the end of experiment (D21 after IR). The sustained activation of YAP in post-acute phase of AKI was accompanied by renal dysfunction and interstitial fibrosis. Knockdown of YAP significantly attenuated IR-induced renal dysfunction and decreased the expression of fibrogenic factors TGF-ß and CTGF in the kidney. We showed that the expression of the transcription factor KLF4, lined on the upstream of YAP, was also persistently increased. Knockdown on KLF4 attenuated YAP increase and nuclear translocation as well as renal functional deterioration and interstitial fibrosis in IR mice, whereas KLF4 overexpression caused opposite effects. KLF4 increased the expression of ITCH, and ITCH facilitated YAP nuclear translocation via degrading LATS1. Furthermore, we demonstrated in primary cultured renal tubular cells that KLF4 bound to the promoter region of YAP and positively regulates YAP expression. In biopsy sample from CKD patients, we also observed increased expression and nuclear distribution of YAP. In conclusion, the activation of YAP in the post-acute phase of AKI is implicated in renal functional deterioration and fibrosis although it exhibits beneficial effect in acute phase. Reprogramming factor KLF4 is responsible for the persistent activation of YAP. Blocking the activation of KLF4-YAP pathway might be a way to prevent the transition of AKI into CKD.


Subject(s)
Acute Kidney Injury/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Fibrosis/metabolism , Kruppel-Like Transcription Factors/metabolism , Reperfusion Injury/metabolism , Acute Kidney Injury/etiology , Animals , Cell Nucleus/metabolism , Cells, Cultured , Fibrosis/etiology , Kruppel-Like Factor 4 , Male , Mice, Inbred C57BL , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/metabolism , Reperfusion Injury/complications , Ubiquitin-Protein Ligases/metabolism , Up-Regulation/physiology , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...