Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(51): 76739-76751, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35670938

ABSTRACT

Lake sediment records the evolution process of the interaction between human and nature. It is important to master the lacustrine sedimentation rate for the ecological environment assessment of catchment. A 60-cm sediment core was collected in the Da River Reservoir during 2019 to analyze radionuclides (210Pb and 137Cs) massic activities, grain size, total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), and metals (Mn, Cu, Al, and Pb) mass fractions to reconstruct the response of sedimentation rate to environmental evolution. The environmental changes in the small catchment were classified into the following three stages through cluster analysis (CA) for geochemical parameters in the sediment core: phase I (1881-1985), phase II (1987-1999), and phase III (2000-2018). The average depth sedimentation rates (ADSRs) of the three stages were 0.33, 0.90, and 1.50 cm/year, respectively. The sedimentation rates increased from the bottom to the surface layer, indicating that the exogenous inputs into the reservoir have been occurring. The sediment deposition in phase III was strongly disturbed by the environmental changes (such as warmer climate and intensified land use). Therefore, sedimentation rates showed a rapid increase. Both Pearson correlation analysis and redundancy analysis (RDA) showed that sedimentation rates were positively correlated with climatic factors, particle size, nutrients and metals mass fractions, elemental ratios, and socioeconomic parameters. Sedimentation rates show high sensitivity to anthropogenic activities and climatic change, which can be used to reconstruct the environmental evolution process at a small catchment scale.


Subject(s)
Geologic Sediments , Rivers , Humans , Geologic Sediments/analysis , Environmental Monitoring , Lead/analysis , Lakes/analysis , Phosphorus/analysis , Nitrogen/analysis , Carbon/analysis , China
2.
Environ Sci Pollut Res Int ; 28(14): 17763-17774, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33400122

ABSTRACT

In the last few decades, the eutrophication of lakes has been a serious issue in the middle and lower reaches of the Yangtze River watershed. To explore the relationship between lake systems and anthropogenic activities, sediments were collected from the Shuanglong reservoir in the Dianchi watershed in Southwest China. Total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and the carbon isotopic ratio (δ13C) were analyzed in sediment cores to reconstruct the effects of natural succession and human activities on the past lacustrine environmental conditions. A reliable chronology of the sediment core was established by using the 210Pb dating technique, which indicated that the age span of the 70-cm sediment core is from the years 1871 to 2011. Above - 31 cm depth in the core, TN, TP, TOC, C/N, and δ13C increased significantly, indicating that eutrophication has occurred since the 1980s. By combining the indicators of δ13C and C/N, it was shown that terrestrial and lacustrine components were the main sources of organic matter (OM) in the reservoir, which was mostly controlled by terrestrial C3 plants and algae. Since the 1980s, increased sewage discharge, fish aquaculture, fertilizer application, population, and economic strength have sped up the eutrophication process, and the eutrophication was further intensified in 2001.


Subject(s)
Geologic Sediments , Water Pollutants, Chemical , Aged , China , Drugs, Chinese Herbal , Environmental Monitoring , Eutrophication , Humans , Lakes , Nitrogen/analysis , Nutrients , Phosphorus/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL