Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Plant Physiol Biochem ; 213: 108806, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861822

ABSTRACT

The enzyme phospholipase A2 (PLA2) plays a crucial role in acyl remodeling of phospholipids via the Lands' cycle, and consequently alters fatty acid compositions in triacylglycerol (TAG). In this study, a full-length cDNA sequence coding Myrmecia incisa phospholipase A2 (MiPLA2) was cloned using the technique of rapid amplification of cDNA ends. Comparison of the 1082-bp cDNA with its corresponding cloned DNA sequence revealed that MiPLA2 contained 3 introns. Mature MiPLA2 (mMiPLA2) had a conserved Ca2+-binding loop and a catalytic site motif that has been recognized in plant secretory PLA2 (sPLA2) proteins. Correspondingly, phylogenetic analysis illustrated that MiPLA2 was clustered within GroupXIA of plant sPLA2 proteins. To ascertain the function of MiPLA2, the cDNA coding for mMiPLA2 was subcloned into the vector pET-32a to facilitate the production of recombinant mMiPLA2 in Escherichia coli. Recombinant mMiPLA2 was purified and used for the in vitro enzyme reaction. Thin-layer chromatography profiles of the catalytic products generated by recombinant mMiPLA2 indicated a specificity for cleaving sn-2 acyl chains from phospholipids, thereby functionally characterizing MiPLA2. Although recombinant mMiPLA2 displayed a strong preference for phosphatidylethanolamine, it preferentially hydrolyzes arachidonic acid (ArA) at the sn-2 position of phosphatidylcholine. Results from the fused expression of p1300-sp-EGFP-mMiPLA2 illustrated that MiPLA2 was localized in the intercellular space of onion epidermis. Furthermore, the positive correlation between MiPLA2 transcription and free ArA levels were established. Consequently, the role of mMiPLA2 in the biosynthesis of ArA-rich TAG was elucidated. This study helps to understand how M. incisa preferentially uses ArA to synthesize TAG.


Subject(s)
Arachidonic Acid , Phosphatidylcholines , Phospholipases A2 , Phospholipases A2/metabolism , Phospholipases A2/genetics , Arachidonic Acid/metabolism , Phosphatidylcholines/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Substrate Specificity , Amino Acid Sequence , Microalgae/genetics , Microalgae/enzymology , Microalgae/metabolism , Cloning, Molecular
2.
Imeta ; 3(2): e181, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882496

ABSTRACT

Lactobacillus rhamnosus GG (LGG), the well-characterized human-derived probiotic strain, possesses excellent properties in the maintenance of intestinal homeostasis, immunoregulation and defense against gastrointestinal pathogens in mammals. Here, we demonstrate that the SpaC pilin of LGG causes intestinal epithelium injury by inducing cell pyroptosis and gut microbial dysbiosis in zebrafish. Dietary SpaC activates Caspase-3-GSDMEa pathways in the intestinal epithelium, promotes intestinal pyroptosis and increases lipopolysaccharide (LPS)-producing gut microbes in zebrafish. The increased LPS subsequently activates Gaspy2-GSDMEb pyroptosis pathway. Further analysis reveals the Caspase-3-GSDMEa pyroptosis is initiated by the species-specific recognition of SpaC by TLR4ba, which accounts for the species-specificity of the SpaC-inducing intestinal pyroptosis in zebrafish. The observed pyroptosis-driven gut injury and microbial dysbiosis by LGG in zebrafish suggest that host-specific beneficial/harmful mechanisms are critical safety issues when applying probiotics derived from other host species and need more attention.

3.
Heliyon ; 10(9): e30640, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38774102

ABSTRACT

The skeletal muscle is the largest organ in mammals and is the primary motor function organ of the body. Our previous research has shown that long non-coding RNAs (lncRNAs) are significant in the epigenetic control of skeletal muscle development. Here, we observed progressive upregulation of lncRNA 4930581F22Rik expression during skeletal muscle differentiation. Knockdown of lncRNA 4930581F22Rik hindered skeletal muscle differentiation and resulted in the inhibition of the myogenic markers MyHC and MEF2C. Furthermore, we found that lncRNA 4930581F22Rik regulates myogenesis via the ERK/MAPK signaling pathway, and this effect could be attenuated by the ERK-specific inhibitor PD0325901. Additionally, in vivo mice injury model results revealed that lncRNA 4930581F22Rik is involved in skeletal muscle regeneration. These results establish a theoretical basis for understanding the contribution of lncRNAs in skeletal muscle development and regeneration.

4.
Int J Biol Macromol ; 263(Pt 2): 130506, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423426

ABSTRACT

Carbonic anhydrase (CA) is a crucial component of CO2-concentrating mechanism (CCM) in macroalgae. In Saccharina japonica, an important brown seaweed, 11 CAs, including 5 α-, 3 ß-, and 3 γ-CAs, have been documented. Among them, one α-CA and one ß-CA were localized in the periplasmic space, one α-CA was found in the chloroplast, and one γ-CA was situated in mitochondria. Notably, the known γ-CAs have predominantly been identified in mitochondria. In this study, we identified a chloroplastic γ-type CA, Sjγ-CA2, in S. japonica. Based on the reported amino acid sequence of Sjγ-CA2, the epitope peptide for monoclonal antibody production was selected as 165 Pro-305. After purification and specificity identification, anti-SjγCA2 monoclonal antibody was employed in immunogold electron microscopy. The results illustrated that Sjγ-CA2 was localized in the chloroplasts of both gametophytes and sporophytes of S. japonica. Subsequently, immunoprecipitation coupled with LC-MS/MS analysis revealed that Sjγ-CA2 mainly interacted with photosynthesis-related proteins. Moreover, the first 65 amino acids at N-terminal of Sjγ-CA2 was identified as the chloroplast transit peptide by the transient expression of GFP-SjγCA2 fused protein in tabacco. Real-time PCR results demonstrated an up-regulation of the transcription of Sjγ-CA2 gene in response to high CO2 concentration. These findings implied that Sjγ-CA2 might contribute to minimizing the leakage of CO2 from chloroplasts and help maintaining a high concentration of CO2 around Rubisco.


Subject(s)
Carbonic Anhydrases , Edible Seaweeds , Laminaria , Seaweed , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Seaweed/metabolism , Carbon , Carbon Dioxide/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Photosynthesis
5.
Article in English | WPRIM (Western Pacific) | ID: wpr-243249

ABSTRACT

<p><b>OBJECTIVE</b>To evaluate the clinical efficacy of incising spinal pia mater to relieve pressure and unilateral open-door laminoplasty with internal screw fixation for treatment of the dated spinal cord injury.</p><p><b>METHODS</b>From March, 2009 to July, 2010, 16 cases with chronic cervical cord injury underwent spinal dura mater incision and unilateral open-door laminoplasty with internal screw fixation. Nerve functions of pre- and postoperation were evaluated by Frankel classification and the Japanese Orthopaedic Association (JOA) scale.The improvement rate of JOA score at the indicated time was recorded.</p><p><b>RESULTS</b>Postoperative Frankel classification rating of 16 patients improved obviously.JOA scores at the 1st month, 3rd month, 6th month, and 12th month after surgery were 7.9 ± 2.3, 8.5 ± 1.6, 8.9 ± 2.1, and 12.4 ± 2.5, respectively, and significantly increased compared with that prior to surgery (5.5 ± 0.6). At the end of follow-up period, JOA score was significantly higher than that of pre-treatment (P<0.05). The recovery was relatively rapid during the first 3 months following the surgery, then entered a platform period.</p><p><b>CONCLUSION</b>It is effective for patients with dated spinal cord injury to undergo spinal decompression and laminoplasty.</p>


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Bone Screws , Decompression, Surgical , Methods , Fracture Fixation, Internal , Laminectomy , Methods , Magnetic Resonance Imaging , Pia Mater , General Surgery , Spinal Cord Injuries , Diagnosis , Pathology , General Surgery
SELECTION OF CITATIONS
SEARCH DETAIL