Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
Add more filters











Publication year range
1.
Chem Sci ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39246350

ABSTRACT

Regulating the performance of peroxidase (POD)-like nanozymes is a prerequisite for achieving highly sensitive and accurate immunoassays. Inspired by natural enzyme catalysis, we design a highly active and selective nanozyme by loading atomically dispersed tungsten (W) sites on Pd metallene (W-O-Pdene) to construct an artificial three-dimensional (3D) catalytic center. The 3D asymmetric W-O-Pd atomic pairs can effectively stretch the O-O bonds in H2O2 and further promote the desorption of H2O to enhance POD-like activity. Moreover, the W-O-Pd sites with unique spatial structures demonstrate satisfactory specificity for H2O2 activation, effectively preventing the interference of dissolved oxygen. Accordingly, the highly active and specific W-O-Pdene nanozymes are utilized for sensitive and accurate prostate-specific antigen (PSA) immunoassay with a low detection limit of 1.92 pg mL-1, superior to commercial enzyme-linked immunosorbent assay.

2.
Anal Chem ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39270057

ABSTRACT

Nanozymes, possessing nanomaterial properties and catalytic activities, offer great opportunities to design sensitive analytical detection systems. However, the low interference resistance of nanozymes poses a significant limitation on the precise detection of target substances. Herein, a nanozyme-based microfluidic chip system for pH-regulated pretreatment and sensitive sensing of cysteine (Cys) is reported. The copper metal-organic framework (Cu MOF) exhibits good cysteine oxidase-like activity at pH 7.0, while demonstrating excellent laccase-like activity at pH 8.0. Taking advantage of the pH-regulated enzyme-like activity, the integrated microfluidic device involving the immobilization of Cu MOF eliminates the interference of dopamine (DA) and accurately detects the target Cys. Compared with the untreated reaction system, the developed nanozyme system shows a significantly improved accuracy in detecting Cys, with an R2 value of 0.9914. This work provides an efficient method to enhance the interference resistance of nanozymes and broadens the application in sample pretreatment.

3.
ACS Nano ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223090

ABSTRACT

Phosphates within tumors function as key biomolecules, playing a significant role in sustaining the viability of tumors. To disturb the homeostasis of cancer cells, regulating phosphate within the organism proves to be an effective strategy. Herein, we report single-atom Ce-doped Pt hydrides (Ce/Pt-H) with high phosphatase-like activity for phosphate hydrolysis. The resultant Ce/Pt-H exhibits a 26.90- and 6.25-fold increase in phosphatase-like activity in comparison to Ce/Pt and Pt-H, respectively. Mechanism investigations elucidate that the Ce Lewis acid site facilitates the coordination with phosphate groups, while the surface hydrides enhance the electron density of Pt for promoting catalytic ability in H2O cleavage and subsequent nucleophilic attack of hydroxyl groups. Finally, by leveraging its phosphatase-like activity, Ce/Pt-H can effectively regulate intracellular phosphates to disrupt redox homeostasis and amplify oxidative stress within cancer cells, ultimately leading to tumor apoptosis. This work provides fresh insights into noble-metal-based phosphatase mimics for inducing tumor apoptosis.

4.
Small ; : e2403354, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101616

ABSTRACT

Defect engineering is an effective strategy to enhance the enzyme-like activity of nanozymes. However, previous efforts have primarily focused on introducing defects via de novo synthesis and post-synthetic treatment, overlooking the dynamic evolution of defects during the catalytic process involving highly reactive oxygen species. Herein, a defect-engineered metal-organic framework (MOF) nanozyme with mixed linkers is reported. Over twofold peroxidase (POD)-like activity enhancement compared with unmodified nanozyme highlights the critical role of in situ defect formation in enhancing the catalytic performance of nanozyme. Experimental results reveal that highly active hydroxyl radical (•OH) generated in the catalytic process etches the 2,5-dihydroxyterephthalic acid ligands, contributing to electronic structure modulation of metal sites and enlarged pore sizes in the framework. The self-enhanced POD-like activity induced by in situ defect engineering promotes the generation of •OH, holding promise in colorimetric sensing for detecting dichlorvos. Utilizing smartphone photography for RGB value extraction, the resultant sensing platform achieves the detection for dichlorvos ranging from 5 to 300 ng mL-1 with a low detection limit of 2.06 ng mL-1. This pioneering work in creating in situ defects in MOFs to improve catalytic activity offers a novel perspective on traditional defect engineering.

5.
Nano Lett ; 24(32): 9974-9982, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39083237

ABSTRACT

Various applications related to glucose catalysis have led to the development of functional nanozymes with glucose oxidase (GOX)-like activity. However, the unsatisfactory catalytic activity of nanozymes is a major challenge for their practical applications due to their inefficient hydrogen and electron transfer. Herein, we present the synthesis of AuFe/polydopamine (PDA) superparticles that exhibit photothermal-enhanced GOX-like activity. Experimental investigations and theoretical calculations reveal that the glucose oxidation process catalyzed by AuFe/PDA follows an artificial-cofactor-mediated hydrogen atom transfer mechanism, which facilitates the generation of carbon-centered radical intermediates. Rather than depending on charged Au surfaces for thermodynamically unstable hydride transfer, Fe(III)-coordinated PDA with abundant amino and phenolic hydroxyl groups serves as cofactor mimics, facilitating both hydrogen atom and electron transfer in the catalytic process. Finally, leveraging the photothermal-enhanced GOX-like and catalase-like activities of AuFe/PDA, we establish a highly sensitive and accurate point-of-care testing blood glucose determination with exceptional anti-jamming capabilities.


Subject(s)
Glucose Oxidase , Gold , Hydrogen , Indoles , Polymers , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Gold/chemistry , Hydrogen/chemistry , Electron Transport , Indoles/chemistry , Polymers/chemistry , Glucose/chemistry , Catalysis , Oxidation-Reduction , Blood Glucose/analysis , Iron/chemistry , Humans
6.
Nano Lett ; 24(29): 9034-9041, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38990087

ABSTRACT

FeNC catalysts are considered one of the most promising alternatives to platinum group metals for the oxygen reduction reaction (ORR). Despite the extensive research on improving ORR activity, the undesirable durability of FeNC is still a critical issue for its practical application. Herein, inspired by the antioxidant mechanism of natural enzymes, CeO2 nanozymes featuring catalase-like and superoxide dismutase-like activities were coupled with FeNC to mitigate the attack of reactive oxygen species (ROS) for improving durability. Benefiting from the multienzyme-like activities of CeO2, ROS generated from FeNC is instantaneously eliminated to alleviate the corrosion of carbon and demetallization of metal sites. Consequently, FeNC/CeO2 exhibits better ORR durability with a decay of only 5 mV compared to FeNC (18 mV) in neutral electrolyte after 10k cycles. The FeNC/CeO2-based zinc-air battery also shows minimal voltage decay over 140 h in galvanostatic discharge-charge cycling tests, outperforming FeNC and commercial Pt/C.

7.
Nano Lett ; 24(31): 9635-9642, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39077994

ABSTRACT

Natural phosphatases featuring paired metal sites inspire various advanced nanozymes with phosphatase-like activity as alternatives in practical applications. Numerous efforts to create point defects show limited metal site pairs, further resulting in insufficient activity. However, it remains a grand challenge to accurately engineer abundant metal site pairs in nanozymes. Herein, we report a grain-boundary-rich ceria metallene nanozyme (GB-CeO2) with phosphatase-like activity. Grain boundaries acting as the line or interfacial defects can effectively increase the content of Ce4+/Ce3+ site pairs to 72.28%, achieving a 49.28-fold enhancement in activity. Furthermore, abundant grain boundaries optimize the band structure to assist the photoelectron transfer under irradiation, which further increases the content of metal site pairs to 88.96% and finally realizes a 114.39-fold enhanced activity over that of CeO2 without irradiation. Given the different inhibition effects of pesticides on catalysts with and without irradiation, GB-CeO2 was successfully applied to recognize mixed toxic pesticides.


Subject(s)
Cerium , Cerium/chemistry , Catalysis , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Nanostructures/chemistry , Pesticides/chemistry
8.
Nano Lett ; 24(29): 8809-8817, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39008523

ABSTRACT

In conventional electrochemiluminescence (ECL) systems, the presence of the competitive cathodic hydrogen evolution reaction (HER) in aqueous electrolytes is typically considered to be a side reaction, leading to a reduced ECL efficiency and stability due to H2 generation and aggregation at the electrode surface. However, the significant role of adsorbed hydrogen (H*) as a key intermediate, formed during the Volmer reaction in the HER process, has been largely overlooked. In this study, employing the luminol-H2O2 system as a model, we for the first time demonstrate a novel H*-mediated coreactant activation mechanism, which remarkably enhances the ECL intensity. H* facilitates cleavage of the O-O bond in H2O2, selectively generating highly reactive hydroxyl radicals for efficient ECL reactions. Experimental investigations and theoretical calculations demonstrate that this H*-mediated mechanism achieves superior coreactant activation compared to the conventional direct electron transfer pathway, which unveils a new pathway for coreactant activation in the ECL systems.

9.
Anal Chem ; 96(28): 11611-11618, 2024 07 16.
Article in English | MEDLINE | ID: mdl-38943567

ABSTRACT

Citrus Huanglongbing (HLB) is known as the cancer of citrus, where Candidatus Liberibacter asiaticus (CLas) is the most prevalent strain causing HLB. In this study, we report a novel electrochemiluminescence (ECL) biosensor for the highly sensitive detection of the CLas outer membrane protein (Omp) gene by coupling rolling circle amplification (RCA) with a CRISPR/Cas12a-responsive smart DNA hydrogel. In the presence of the target, a large number of amplicons are generated through RCA. The amplicons activate the trans-cleavage activity of CRISPR/Cas12a through hybridizing with crRNA, triggering the response of smart DNA hydrogel to release the encapsulated AuAg nanoclusters (AuAg NCs) on the electrode and therefore leading to a decreased ECL signal. The ECL intensity change (I0 - I) is positively correlated with the concentration of the target in the range 50 fM to 5 nM, with a limit of detection of 40 fM. The performance of the sensor has also been evaluated with 10 samples of live citrus leaves (five HLB negative and five HLB positive), and the result is in excellent agreement with the gold standard qPCR result. The sensing strategy has expanded the ECL versatility for detecting varying levels of dsDNA or ssDNA in plants with high sensitivity.


Subject(s)
Bacterial Outer Membrane Proteins , Citrus , Electrochemical Techniques , Luminescent Measurements , Electrochemical Techniques/methods , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/chemistry , Citrus/microbiology , Citrus/chemistry , Hydrogels/chemistry , Biosensing Techniques/methods , DNA/chemistry , DNA/genetics , CRISPR-Cas Systems/genetics , Liberibacter/genetics , Liberibacter/chemistry , Nucleic Acid Amplification Techniques , Plant Diseases/microbiology , Gold/chemistry , Metal Nanoparticles/chemistry , Limit of Detection
10.
Angew Chem Int Ed Engl ; 63(33): e202407481, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38840295

ABSTRACT

The design of heterojunctions that mimic natural photosynthetic systems holds great promise for enhancing photoelectric response. However, the limited interfacial space charge layer (SCL) often fails to provide sufficient driving force for the directional migration of inner charge carriers. Drawing inspiration from the electron transport chain (ETC) in natural photosynthesis system, we developed a novel anisotropic dual S-scheme heterojunction artificial photosynthetic system composed of Bi2O3-BiOBr-AgI for the first time, with Bi2O3 and AgI selectively distributed along the bicrystal facets of BiOBr. Compared to traditional semiconductors, the anisotropic carrier migration in BiOBr overcomes the recombination resulting from thermodynamic diffusion, thereby establishing a potential ETC for the directional migration of inner charge carriers. Importantly, this pioneering bioinspired design overcomes the limitations imposed by the limited distribution of SCL in heterojunctions, resulting in a remarkable 55-fold enhancement in photoelectric performance. Leveraging the etching of thiols on Ag-based materials, this dual S-scheme heterojunction is further employed in the construction of photoelectrochemical sensors for the detection of acetylcholinesterase and organophosphorus pesticides.

11.
Adv Healthc Mater ; : e2401834, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889805

ABSTRACT

Multiple enzyme-induced cascade catalysis has an indispensable role in the process of complex life activities, and is widely used to construct robust biosensors for analyzing various targets. The immobilized multi-enzyme cascade catalysis system is a novel biomimetic catalysis strategy that immobilizes various enzymes with different functions in stable carriers to simulate the synergistic catalysis of multiple enzymes in biological systems, which enables high stability of enzymes and efficiency enzymatic cascade catalysis. Nanozymes, a type of nanomaterial with intrinsic enzyme-like characteristics and excellent stabilities, are also widely applied instead of enzymes to construct immobilized cascade systems, achieving better catalytic performance and reaction stability. Due to good stability, reusability, and remarkably high efficiency, the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems show distinct advantages in promoting signal transduction and amplification, thereby attracting vast research interest in biosensing applications. This review focuses on the research progress of the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems in recent years. The construction approaches, factors affecting the efficiency, and applications for sensitive biosensing are discussed in detail. Further, their challenges and outlooks for future study are also provided.

12.
Nano Lett ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843442

ABSTRACT

Increasing threats of air pollution prompt the design of air purification systems. As a promising initiative defense strategy, nanocatalysts are integrated to catalyze the detoxification of specific pollutants. However, it remains a grand challenge to tailor versatile nanocatalysts to cope with diverse pollutants in practice. Here, we report a nanozyme metabolism system to realize broad-spectrum protection from air pollution. Atomic K-modified carbon nitride featuring flavin oxidase-like and peroxidase-like activities was synthesized to initiate nanozyme metabolism. In situ experiments and theoretical investigations collectively show that K sites optimize the geometric and electronic structure of cyano sites for both enzyme-like activities. As a proof of concept, the nanozyme metabolism was applied to the mask against volatile organic compounds, persistent organic pollutants, reactive oxygen species, bacteria, and so on. Our finding provides a thought to tackle global air pollution and deepens the understanding of nanozyme metabolism.

13.
Anal Chim Acta ; 1308: 342664, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740454

ABSTRACT

Nanozymes is a kind of nanomaterials with enzyme catalytic properties. Compared with natural enzymes, nanozymes merge the advantages of both nanomaterials and natural enzymes, which is highly important in applications such as biosensing, clinical diagnosis, and food inspection. In this study, we prepared ß-MnOOH hexagonal nanoflakes with a high oxygen vacancy ratio by utilizing SeO2 as a sacrificial agent. The defect-rich MnOOH hexagonal nanoflakes demonstrated excellent oxidase-like activity, catalyzing the oxidation substrate in the presence of O2, thereby rapidly triggering a color reaction. Consequently, a colorimetric sensing platform was constructed to assess the total antioxidant capacity in commercial beverages. The strategy of introducing defects in situ holds great significance for the synthesis of a series of high-performance metal oxide nanozymes, driving the development of faster and more efficient biosensing and analysis methods.


Subject(s)
Antioxidants , Manganese Compounds , Oxides , Oxides/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/analysis , Manganese Compounds/chemistry , Colorimetry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Oxidation-Reduction , Nanostructures/chemistry , Catalysis
14.
Angew Chem Int Ed Engl ; 63(31): e202405571, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38757486

ABSTRACT

The rational design of efficient catalysts for uric acid (UA) electrooxidation, as well as the establishment of structure-activity relationships, remains a critical bottleneck in the field of electrochemical sensing. To address these challenges, herein, a hybrid catalyst that integrates carbon-supported Pt nanoparticles and nitrogen-coordinated Mn single atoms (PtNPs/MnNC) is developed. The metal-metal interaction during annealing affords the construction of metallic-bonded Pt-Mn pairs between PtNPs and Mn single atoms, facilitating the electron transfer from PtNPs to the support and thereby optimizing the electronic structure of catalysts. More importantly, experiments and theoretical calculations provide visual proof for the 'incipient hydrous oxide adatom mediator' mechanism for UA oxidation. The Pt-Mn pairs first adsorb OH* to construct the bridged Pt-OH-Mn mediators to serve as a highly active intermediate for N-H bond dissociation and proton transfer. Benefiting from the unique electronic and geometric structure of the catalytic center and reactive intermediates, PtNPs/MnNC exhibits superior electrooxidation performance. The electrochemical sensor based on PtNPs/MnNC enables sensitive detection and discrimination of UA and dopamine in serum samples. This work offers new insights into the construction of novel electrocatalysts for sensitive sensing platforms.

16.
J Am Chem Soc ; 146(17): 12197-12205, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629507

ABSTRACT

The development of potential-resolved electrochemiluminescence (ECL) systems with dual emitting signals holds great promise for accurate and reliable determination in complex samples. However, the practical application of such systems is hindered by the inevitable mutual interaction and mismatch between different luminophores or coreactants. In this work, for the first time, by precisely tuning the oxygen reduction performance of M-N-C single-atom catalysts (SACs), we present a dual potential-resolved luminol ECL system employing endogenous dissolved O2 as a coreactant. Using advanced in situ monitoring and theoretical calculations, we elucidate the intricate mechanism involving the selective and efficient activation of dissolved O2 through central metal species modulation. This modulation leads to the controlled generation of hydroxyl radical (·OH) and superoxide radical (O2·-), which subsequently trigger cathodic and anodic luminol ECL emission, respectively. The well-designed Cu-N-C SACs, with their moderate oxophilicity, enable the simultaneous generation of ·OH and O2·-, thereby facilitating dual potential-resolved ECL. As a proof of concept, we employed the principal component analysis statistical method to differentiate antibiotics based on the output of the dual-potential ECL signals. This work establishes a new avenue for constructing a potential-resolved ECL platform based on a single luminophore and coreactant through precise regulation of active intermediates.

17.
Anal Chem ; 96(15): 6072-6078, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38577757

ABSTRACT

The urgent need for sensitive and accurate assays to monitor acetylcholinesterase (AChE) activity and organophosphorus pesticides (OPs) arises from the imperative to safeguard human health and protect the ecosystem. Due to its cost-effectiveness, ease of operation, and rapid response, nanozyme-based colorimetry has been widely utilized in the determination of AChE activity and OPs. However, the rational design of nanozymes with high activity and specificity remains a great challenge. Herein, trace amount of Bi-doped core-shell Pd@Pt mesoporous nanospheres (Pd@PtBi2) have been successfully synthesized, exhibiting good peroxidase-like activity and specificity. With the incorporation of trace bismuth, there is a more than 4-fold enhancement in the peroxidase-like performance of Pd@PtBi2 compared to that of Pd@Pt. Besides, no significant improvement of oxidase-like and catalase-like activities of Pd@PtBi2 was found, which prevents interference from O2 and undesirable consumption of substrate H2O2. Based on the blocking impact of thiocholine, a colorimetric detection platform utilizing Pd@PtBi2 was constructed to monitor AChE activity with sensitivity and selectivity. Given the inhibition of OPs on AChE activity, a biosensor was further developed by integrating Pd@PtBi2 with AChE to detect OPs, capitalizing on the cascade amplification strategy. The OP biosensor achieved a detection limit as low as 0.06 ng mL-1, exhibiting high sensitivity and anti-interference ability. This work is promising for the construction of nanozymes with high activity and specificity, as well as the development of nanozyme-based colorimetric biosensors.


Subject(s)
Biosensing Techniques , Nanospheres , Nerve Agents , Pesticides , Humans , Acetylcholinesterase/metabolism , Organophosphorus Compounds , Pesticides/analysis , Hydrogen Peroxide , Ecosystem , Oxidoreductases , Peroxidase , Colorimetry
18.
Talanta ; 275: 126112, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677169

ABSTRACT

The development of nanomaterials with multi-enzyme-like activity is crucial for addressing challenges in multi-enzyme-based biosensing systems, including cross-talk between different enzymes and the complexities and costs associated with detection. In this study, Pt nanoparticles (Pt NPs) were successfully supported on a Zr-based metal-organic framework (MOF-808) to create a composite catalyst named MOF-808/Pt NPs. This composite catalyst effectively mimics the functions of acetylcholinesterase (AChE) and peroxidase (POD). Leveraging this capability, we replaced AChE and POD with MOF-808/Pt NPs and constructed a biosensor for sensitive detection of acetylcholine (ACh). The MOF-808/Pt NPs catalyze the hydrolysis of ACh, resulting in the production of acetic acid. The subsequent reduction in pH value further enhances the POD-like activity of the MOFs, enabling signal amplification through the oxidation of a colorimetric substrate. This biosensor capitalizes on pH variations during the reaction to modulate the different enzyme-like activities of the MOFs, simplifying the detection process and eliminating cross-talk between different enzymes. The developed biosensor holds great promise for clinical diagnostic analysis and offers significant application value in the field.


Subject(s)
Acetylcholine , Acetylcholinesterase , Biosensing Techniques , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Biosensing Techniques/methods , Acetylcholine/analysis , Acetylcholine/metabolism , Acetylcholine/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Platinum/chemistry , Metal Nanoparticles/chemistry , Hydrogen-Ion Concentration , Zirconium/chemistry , Biomimetic Materials/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Colorimetry/methods , Catalysis , Limit of Detection
19.
Sci Bull (Beijing) ; 69(15): 2387-2394, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38679503

ABSTRACT

The anodic oxygen evolution reaction is a well-acknowledged side reaction in traditional aqueous electrochemiluminescence (ECL) systems due to the generation and surface aggregation of oxygen at the electrode, which detrimentally impacts the stability and efficiency of ECL emission. However, the effect of reactive oxygen species generated during water oxidation on ECL luminophores has been largely overlooked. Taking the typical luminol emitter as an example, herein, we employed NiIr single-atom alloy aerogels possessing efficient water oxidation activity as a prototype co-reaction accelerator to elucidate the relationship between ECL behavior and water oxidation reaction kinetics for the first time. By regulating the concentration of hydroxide ions in the electrolyte, the electrochemical oxidation processes of both luminol and water are finely tuned. When the concentration of hydroxide ions in electrolyte is low, the kinetics of water oxidation is attenuated, which limits the generation of oxygen, effectively mitigates the influence of oxygen accumulation on the ECL strength, and offers a novel perspective for harnessing side reactions in ECL systems. Finally, a sensitive and stable sensor for antioxidant detection was constructed and applied to the practical sample detection.

20.
Anal Chem ; 96(12): 5022-5028, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38470563

ABSTRACT

For conventional potential-resolved ratiometric electrochemiluminescence (ECL) systems, the introduction of multiplex coreactants is imperative. However, the undesirable interactions between different coreactants inevitably affect analytical accuracy and sensitivity. Herein, through the coordination of aggregation-induced emission ligands with gadolinium cations, the self-luminescent metal-organic framework (Gd-MOF) is prepared and serves as a novel coreactant-free anodic ECL emitter. By the intercalation of [Ru(bpy)2dppz]2+ with light switch effect into DNA duplex, one high-efficiency cathodic ECL probe is obtained using K2S2O8 as a coreactant. In the presence of acetamiprid, the strong affinity between the target and its aptamer induces the release of [Ru(bpy)2dppz]2+, resulting in a decreasing cathode signal and an increasing anode signal owing to the ECL resonance energy transfer from Gd-MOF to [Ru(bpy)2dppz]2+. In this way, an efficient dual-signal ECL aptasensor is constructed for the ratiometric analysis of acetamiprid, exhibiting a remarkably low detection limit of 0.033 pM. Strikingly, by using only one exogenous coreactant, the cross interference from multiple coreactants can be eliminated, thus improving the detection accuracy. The developed high-performance ECL sensing platform is successfully applied to monitor the residual level of acetamiprid in real samples, demonstrating its potential application in the field of food security.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Neonicotinoids , Luminescent Measurements/methods , Biosensing Techniques/methods , Photometry , Electrochemical Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL