Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
2.
Food Funct ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150321

ABSTRACT

The occurrence and progression of mild cognitive impairment (MCI) are closely related to dysbiosis of the gut microbiota. Ginsenoside compound K (CK), a bioactive component of ginseng, has been shown to alleviate gut microbiota dysbiosis and neural damage. However, the mechanisms by which CK regulates the gut microbiota to improve MCI remain unexplored. In this study, an MCI mouse model induced by D-galactose was used, and 16S rRNA gene sequencing, metabolomics, transcriptomics, and integrative multi-omics analyses were employed to investigate the potential mechanisms by which CK alleviates MCI through modulation of the gut microbiota. The results demonstrated that CK repaired intestinal barrier dysfunction caused by MCI, improved blood-brain barrier (BBB) integrity, inhibited activation of microglial cells and astrocytes, and significantly ameliorated MCI. Furthermore, CK enhanced gut microbiota diversity, notably enriched beneficial bacteria such as Akkermansia, and modulated the levels of short-chain fatty acids (SCFAs), particularly increasing propionate, thereby alleviating gut microbiota dysbiosis caused by MCI. Germ-free experiments confirmed that gut microbiota is a key factor for ginsenoside CK in relieving MCI. Further investigation revealed that CK regulated the TLR4-MyD88-NF-κB signaling pathway through modulation of gut microbiota-mediated propionate metabolism, significantly reducing systemic inflammation and alleviating MCI. Our findings provide a new theoretical basis for using CK as a potential means of modulating the gut microbiota for the treatment of MCI.

3.
J Agric Food Chem ; 72(33): 18537-18551, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39129180

ABSTRACT

Diabetes mellitus is a typical metabolic disease that has become a major threat to human health worldwide. Ginseng polypeptide (GP), a small molecule active substance isolated from ginseng, has shown positive hypoglycemic effects in preliminary studies. However, its mechanism in ameliorating multiorgan damage in db/db mice is unclear. In this study, we utilized network pharmacology, molecular docking, and animal experiments to explore the targets and biological mechanisms of GP to ameliorate multiorgan damage in T2DM. The results showed that GP improves T2DM by inhibiting inflammation and oxidative damage, thereby alleviating hyperglycemia, insulin resistance, and multiorgan damage in db/db mice. These effects are potentially mediated through the PI3K-Akt signaling pathway and the MAPK signaling pathway. This study establishes GP's efficacy in alleviating T2DM and provides a robust theoretical basis for the development of new drugs or functional foods for treating this disease.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Molecular Docking Simulation , Network Pharmacology , Panax , Peptides , Animals , Panax/chemistry , Mice , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/administration & dosage , Male , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Peptides/chemistry , Peptides/pharmacology , Peptides/administration & dosage , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Plant Extracts/chemistry , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Insulin Resistance , Signal Transduction/drug effects , Blood Glucose/metabolism , Blood Glucose/drug effects
5.
J Adv Res ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969093

ABSTRACT

INTRODUCTION: Dysbiosis of the gut microbiota is emerging as a pivotal factor in the pathogenesis of colorectal cancer (CRC). Ginsenoside Rh4 (Rh4) is an active compound isolated from ginseng with beneficial effects in modulating intestinal inflammation and gut microbiota dysbiosis, but how Rh4 regulates the gut microbiota to alleviate CRC remains underexplored. OBJECTIVES: We investigated the impact of Rh4 on CRC and the mechanism of its action in inhibiting CRC via modulation of gut microbiota. METHODS: We used the AOM/DSS model and employed transcriptomics, genomics and metabolomics techniques to explore the inhibitory impact of Rh4 on CRC. Furthermore, we employed experiments involving antibiotic treatment and fecal microbiota transplantation (FMT) to investigate the role of the gut microbiota. Finally, we elucidated the pivotal role of key functional bacteria and metabolites regulated by Rh4 in CRC. RESULTS: Our research findings indicated that Rh4 repaired intestinal barrier damage caused by CRC, alleviated intestinal inflammation, and inhibited the development of CRC. Additionally, Rh4 inhibited CRC in a gut microbiota-dependent manner. Rh4 increased the diversity of gut microbiota, enriched the probiotic Akkermansia muciniphila (A. muciniphila), and alleviated gut microbiota dysbiosis caused by CRC. Subsequently, Rh4 regulated A. muciniphila-mediated bile acid metabolism. A. muciniphila promoted the production of UDCA by enhancing the activity of 7α-hydroxysteroid dehydrogenase (7α-HSDH). UDCA further activated FXR, modulated the TLR4-NF-κB signaling pathway, thus inhibiting the development of CRC. CONCLUSION: Our results confirm that Rh4 inhibits CRC in a gut microbiota-dependent manner by modulating gut microbiota-mediated bile acid metabolism and promoting the production of UDCA, which further activates the FXR receptor and regulates the TLR4-NF-κB signaling pathway. Our results confirm that Rh4 has the potential to be used as a modulator of gut microbiota for preventing and treatment of CRC.

6.
Heliyon ; 10(13): e33481, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040306

ABSTRACT

Food security has a bearing on national development and people's livelihoods and is an important guarantee of social stability for national development. The problems of arable land abandonment and non-grain are becoming more and more serious, and national food security is difficult to guarantee, which will seriously hinder the forward development of China's society and economy. Taking Ruijin City of Jiangxi Province as an example, this study calculated the abandonment level and non-grain level of arable land in Ruijin City respectively from two aspects, and explored the spatial differentiation law of farmland abandonment and non-grain level in the hilly and mountainous areas of southern Jiangxi Province by using spatial autocorrelation and cold and hot spot analysis methods, and the causes of arable land abandonment and non-grain spatial differentiation in the hilly mountainous areas of Gannan were revealed by the methods of Geodetector factor detection and interaction detection. Conclusions of the study: (1) Ruijin City, the abandoned area was 1216.73 hm2, the abandonment rate of each village ranged from 0.01 % to 50.62 %, and the comprehensive abandonment rate was 4.90 %; the area of non-grain was 2937.27 hm2, and the rate of non-grain of each village ranged from 0.01 % to 100.00 %, and the comprehensive non-grain rate was 11.83 %. The area of non-grain was 2937.27 hm2, and the rate of non-grain in each village ranged from 0.01 % to 100.00 %, and the comprehensive rate of non-grain was 11.83 %. (2) The phenomenon of abandonment of arable land and non-grain in Gannan hilly and mountainous areas has a certain clustering and driving effect in space. Globally, the phenomena of arable land abandonment and non-grain in Ruijin City are positively correlated, with the global Moran's I of arable land abandonment rate being 0.05, and the global Moran's I of arable land non-grain being 0.73. (3) Whether or not arable land in the hilly mountainous areas of Gannan is abandoned is affected by the combination of socioeconomics, natural resources, farming conditions, and economic location, with elevation, the degree of arable land contiguity, and population density being the dominant factors. The interaction of elevation, degree of concentration and contiguity, field regularity, and per capita arable land area increased the spatial variability of arable land abandonment in the hilly mountainous areas of Gannan. Whether the phenomenon of non-grain occurs or not is affected by socio-economic conditions, farming conditions and economic location, of which the proportion of paddy fields, land transfer price, arable land area, and urban-rural gradient are the dominant factors. The proportion of paddy land, the price of land transfer, the area of arable land, and the urban-rural gradient interact with each other, and the tendency of arable land to be planted with non-grain crops is more serious.

8.
J Agric Food Chem ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801678

ABSTRACT

In the development of biomaterials with specific structural domains associated with various cellular activities, the limited integrin specificity of commonly used adhesion sequences, such as the RGD tripeptide, has resulted in an inability to precisely control cellular responses. To overcome this limitation, we conducted multiple replications of the integrin α2ß1-specific ligand, the collagen hexapeptide Gly-Phe-Pro-Gly-Glu-Arg (GFPGER) in Pichia pastoris. This enabled the development of recombinant collagen with high biological activity, which was subsequently expressed, isolated, and purified for structural and functional analysis. The proteins carrying the multiple replications GFPGER sequence demonstrated significant bioactivity in cells, leading to enhanced cell adhesion, osteoblast differentiation, and mineralization when compared to control groups. Importantly, these effects were mediated by integrin α2ß1. The new collagen constructed in this study is expected to be a biomaterial for regulating specific cell functions and fates.

9.
Phytomedicine ; 128: 155577, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608488

ABSTRACT

BACKGROUND: Gastrointestinal mucositis stands as one of the most severe side effects of irinotecan (CPT-11). however, only palliative treatment is available at present. Therefore, there is an urgent need for adjunctive medications to alleviate the side effects of CPT-11. PURPOSE: In this study, our objective was to explore whether ginsenoside Rh4 could serve as a modulator of the gut microbiota and an adjunctive agent for chemotherapy, thereby alleviating the side effects of CPT-11 and augmenting its anti-tumor efficacy. STUDY DESIGN: A CPT-11-induced gastrointestinal mucositis model was used to investigate whether ginsenoside Rh4 alleviated CPT-11-induced gastrointestinal mucositis and enhanced the anti-tumor activity of CPT-11. METHODS: In this study, we utilized CT26 cells to establish a xenograft tumor model, employing transcriptomics, genomics, and metabolomics techniques to investigate the impact of ginsenoside Rh4 on CPT-11-induced gastrointestinal mucositis and the effect on the anti-tumor activity of CPT-11. Furthermore, we explored the pivotal role of gut microbiota and their metabolites through fecal microbiota transplantation (FMT) experiments and supplementation of the key differential metabolite, hyodeoxycholic acid (HDCA). RESULTS: The results showed that ginsenoside Rh4 repaired the impairment of intestinal barrier function and restored intestinal mucosal homeostasis in a gut microbiota-dependent manner. Ginsenoside Rh4 treatment modulated gut microbiota diversity and upregulated the abundance of beneficial bacteria, especially Lactobacillus_reuteri and Akkermansia_muciniphila, which further regulated bile acid biosynthesis, significantly promoted the production of the beneficial secondary bile acid hyodeoxycholic acid (HDCA), thereby alleviating CPT-11-induced gut microbiota dysbiosis. Subsequently, ginsenoside Rh4 further alleviated gastrointestinal mucositis through the TGR5-TLR4-NF-κB signaling pathway. On the other hand, ginsenoside Rh4 combination therapy could further reduce the weight and volume of colon tumors, promote tumor cell apoptosis, and enhance the anti-tumor activity of CPT-11 by inhibiting the PI3K-Akt signaling pathway, thus exerting a synergistic anti-tumor effect. CONCLUSION: In summary, our findings confirm that ginsenoside Rh4 can alleviate CPT-11-induced gastrointestinal mucositis and enhance the anti-tumor activity of CPT-11 by modulating gut microbiota and its related metabolites. Our study validates the potential of ginsenoside Rh4 as a modulator of the gut microbiota and an adjunctive agent for chemotherapy, offering new therapeutic strategies for addressing chemotherapy side effects and improving chemotherapy efficacy.


Subject(s)
Gastrointestinal Microbiome , Ginsenosides , Irinotecan , Mucositis , Ginsenosides/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Irinotecan/pharmacology , Mucositis/chemically induced , Mucositis/drug therapy , Mice , Cell Line, Tumor , Mice, Inbred BALB C , Fecal Microbiota Transplantation , Xenograft Model Antitumor Assays , Male , Antineoplastic Agents, Phytogenic/pharmacology
10.
J Agric Food Chem ; 72(17): 9867-9879, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38602268

ABSTRACT

Dysbiosis of gut microbiota is believed to be associated with inflammatory bowel disease (IBD). Ginsenoside compound K (CK), the main metabolite of Panax ginseng ginsenoside, has proven effective as an anti-inflammatory agent in IBD. However, the mechanisms by which CK modulates gut microbiota to ameliorate IBD remain poorly understood. Herein, CK demonstrated the potential to suppress the release of proinflammatory cytokines by gut microbiota modulation. Notably, supplementation with CK promoted the restoration of a harmonious balance in gut microbiota, primarily by enhancing the populations of Lactobacillus and Akkermansia. Furthermore, CK considerably elevated the concentrations of tryptophan metabolites derived from Lactobacillus that could activate the aryl hydrocarbon receptor. Overall, the promising alleviative efficacy of CK primarily stemmed from the promotion of Lactobacillus growth and production of tryptophan metabolites, suggesting that CK should be regarded as a prospective prebiotic agent for IBD in the future.


Subject(s)
Dextran Sulfate , Gastrointestinal Microbiome , Ginsenosides , Inflammatory Bowel Diseases , Mice, Inbred C57BL , Receptors, Aryl Hydrocarbon , Tryptophan , Animals , Humans , Male , Mice , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/drug effects , Dextran Sulfate/pharmacology , Gastrointestinal Microbiome/drug effects , Ginsenosides/metabolism , Ginsenosides/pharmacology , Ginsenosides/administration & dosage , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/microbiology , Panax/chemistry , Panax/metabolism , Panax/microbiology , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Tryptophan/metabolism
11.
Int J Biol Macromol ; 270(Pt 1): 131886, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677696

ABSTRACT

Type V collagen is an essential component of the extracellular matrix (ECM), and its remodeling releases specific protein fragments that can specifically inhibit endothelial cell responses such as proliferation, migration, and invasion. In this study, we have successfully constructed two engineered strains of Pichia pastoris capable of producing recombinant collagen through a new genetic engineering approach. Through high-density fermentation, the expression of 1605 protein and 1610 protein could reach 2.72 g/L and 4.36 g/L. With the increase of repetition times, the yield also increased. Bioactivity analysis showed that recombinant collagen could block the angiogenic effect of FGF-2 on endothelial cells by eliminating FGF-2-induced endothelial cell migration and invasion. Collectively, the recombinant proteins we successfully expressed have a wide range of potential for inhibiting angiogenesis in the biomaterials and biomedical fields.


Subject(s)
Recombinant Proteins , Recombinant Proteins/pharmacology , Recombinant Proteins/genetics , Humans , Collagen/chemistry , Collagen/pharmacology , Cell Movement/drug effects , Repetitive Sequences, Amino Acid , Amino Acid Sequence , Human Umbilical Vein Endothelial Cells/drug effects , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/chemistry , Gene Expression , Fermentation , Saccharomycetales/genetics , Saccharomycetales/metabolism
12.
Food Chem Toxicol ; 186: 114587, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461953

ABSTRACT

Hepatocellular carcinoma (HCC) is the third most lethal cancer in the world. Recent studies have shown that suppression of autophagy plays an important role in the development of HCC. Ginsenoside Rk1 is a protopanaxadiol saponin isolated from ginseng and has a significant anti-tumor effect, but its role and mechanism in HCC are still unclear. In this study, a mouse liver cancer model induced by diethylnitrosamine and carbon tetrachloride (DEN + CCl4) was employed to investigate the inhibitory effect of Rk1 on HCC. The results demonstrate that ginsenoside Rk1 effectively inhibits liver injury, liver fibrosis, and cirrhosis during HCC progression. Transcriptome data analysis of mouse liver tissue reveals that ginsenoside Rk1 significantly regulates the AMPK/mTOR signaling pathway, autophagy pathway, and apoptosis pathway. Subsequent studies show that ginsenoside Rk1 induces AMPK protein activation, upregulates the expression of autophagy marker LC3-II protein to promote autophagy, and then downregulates the expression of Bcl2 protein to trigger a caspase cascade reaction, activating AMPK/mTOR-induced toxic autophagy to promote cells death. Importantly, co-treatment of ginsenoside Rk1 with autophagy inhibitors can inhibit apoptosis of HCC cells, once again demonstrating the ability of ginsenoside Rk1 to promote autophagy-dependent apoptosis. In conclusion, our study demonstrates that ginsenoside Rk1 inhibits the development of primary HCC by activating toxic autophagy to promote apoptosis through the AMPK/mTOR pathway. These findings confirm that ginsenoside Rk1 is a promising new strategy for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Ginsenosides , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Autophagy
13.
J Pharm Anal ; 14(2): 259-275, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38464791

ABSTRACT

The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer (CRC). However, the effect of ginsenoside Rk3 (Rk3) on CRC and gut microbiota remains unclear. Therefore, the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation. Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors, repairs intestinal barrier damage, and regulates the gut microbiota imbalance caused by CRC, including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis, and clearance of pathogenic Desulfovibrio. Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids, particularly by upregulating glutamine, which has the potential to regulate the immune response. Furthermore, we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells (ILC3s) and T helper 17 (Th17) signaling pathways, which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) signaling pathway. These results indicate that Rk3 modulates gut microbiota, regulates ILC3s immune response, and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors. More importantly, the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota. In summary, these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC.

14.
Research (Wash D C) ; 7: 0332, 2024.
Article in English | MEDLINE | ID: mdl-38533182

ABSTRACT

2,2',7,7'-Tetrakis(N,N-di-p-methoxyphenyl)-amine-9,9'-spirobifluorene (Spiro-OMeTAD) represents the state-of-the-art hole-transporting material (HTM) in n-i-p perovskite solar cells (PSCs). However, its susceptibility to stability issues has been a long-standing concern. In this study, we embark on a comprehensive exploration of the untapped potential within the family of spiro-type HTMs using an innovative anisotropic regulation strategy. Diverging from conventional approaches that can only modify spirobifluorene with single functional group, this approach allows us to independently tailor the two orthogonal components of the spiro-skeleton at the molecular level. The newly designed HTM, SF-MPA-MCz, features enhanced thermal stability, precise energy level alignment, superior film morphology, and optimized interfacial properties when compared to Spiro-OMeTAD, which contribute to a remarkable power conversion efficiency (PCE) of 24.53% for PSCs employing SF-MPA-MCz with substantially improved thermal stability and operational stability. Note that the optimal concentration for SF-MPA-MCz solution is only 30 mg/ml, significantly lower than Spiro-OMeTAD (>70 mg/ml), which could remarkably reduce the cost especially for large-area processing in future commercialization. This work presents a promising avenue for the versatile design of multifunctional HTMs, offering a blueprint for achieving efficient and stable PSCs.

15.
J Agric Food Chem ; 72(13): 7266-7278, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38523338

ABSTRACT

Ginseng oligopeptides are naturally occurring small-molecule peptides extracted from ginseng that exhibit positive effects on health and longevity. However, the current industrial production of ginseng oligopeptides primarily relies on plant extraction and chemical synthesis. In this study, we proposed a novel genetic engineering approach to produce active ginseng peptides through multicopy tandem insertion (5 and 15 times). The recombinant ginseng peptides were successfully produced from engineered Bacillus subtilis with an increasing yield from 356.55 to 2900 mg/L as the repeats multiple. Additionally, an oxidative stress-induced aging model caused by H2O2 was established to evaluate whether the recombinant ginseng peptides, without enzymatic hydrolysis into individual peptides, also have positive effects on antiaging. The results demonstrated that all two kinds of recombinant ginseng peptides could also delay cellular aging through various mechanisms, such as inhibiting cell cycle arrest, suppressing the expression of pro-inflammatory factors, and enhancing cellular antioxidant capacity.


Subject(s)
Bacillus subtilis , Panax , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Panax/chemistry , Hydrogen Peroxide/metabolism , Oxidative Stress , Oligopeptides/genetics , Oligopeptides/pharmacology , Oligopeptides/metabolism
16.
Biomater Sci ; 12(10): 2504-2520, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38529571

ABSTRACT

In recent years, the design and synthesis of Janus hydrogels have witnessed a thriving development, overcoming the limitations of single-performance materials and expanding their potential applications in tissue engineering and regenerative medicine. Janus hydrogels, with their exceptional mechanical properties and excellent biocompatibility, have emerged as promising candidates for various biomedical applications, including tissue engineering and regenerative therapies. In this review, we present the latest progress in the synthesis of Janus hydrogels using commonly employed preparation methods. We elucidate the surface and interface interactions of these hydrogels and discuss the enhanced properties bestowed by the unique "Janus" structure in biomaterials. Additionally, we explore the applications of Janus hydrogels in facilitating regenerative therapies, such as drug delivery, wound healing, tissue engineering, and biosensing. Furthermore, we analyze the challenges and future trends associated with the utilization of Janus hydrogels in biomedical applications.


Subject(s)
Biocompatible Materials , Hydrogels , Regenerative Medicine , Tissue Engineering , Hydrogels/chemistry , Biocompatible Materials/chemistry , Humans , Wound Healing/drug effects , Drug Delivery Systems , Animals
17.
Phytomedicine ; 124: 155287, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176268

ABSTRACT

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a prevalent chronic liver disease that lacks an FDA-approved treatment medicine. Despite the known antitumor and hypoglycemic properties of Ginsenoside Rg5, its effects and underlying mechanisms in the context of NASH remain largely unexplored. PURPOSE: This study aims to investigate the effect of Rg5 on NASH mice induced by a high-fat diet and CCl4. STUDY DESIGN: In vivo experiments, a mouse NASH model was established by a HFHC diet plus intraperitoneal injection of low-dose CCl4. In vitro experiments, a cellular steatosis model was established using free fatty acids (FFA) induced HepG2 cells. In addition, a fibrogenesis model was established using HSC-LX2 cells. METHODS: The effects of Ginsenoside Rg5 on lipid accumulation and oxidative damage were analyzed by ELISA kit, H&E staining, Oil Red O staining, flow cytometry and Western blot. The effects of Ginsenoside Rg5 on liver fibrosis were analyzed by Masson staining, Sirus Red staining, immunohistochemistry and Western blot. The effect of Ginsenoside Rg5 on Notch1 signaling pathway in liver was studied by protein Oil Red staining, protein immunoblotting and immunofluorescence. RESULTS: In terms of lipid accumulation, Rg5 has the ability to regulate key proteins related to lipogenesis, thereby inhibiting hepatic lipid accumulation and oxidative stress. Additionally, Rg5 can reduce the occurrence of hepatocyte apoptosis by regulating the p53 protein. Moreover, after Rg5 intervention, the presence of fibrotic proteins (α-SMA, Collagen 1, TGF-ß) in the liver is significantly suppressed, thus inhibiting liver fibrosis. Lastly, Rg5 leads to a decrease in the expression levels of Notch1 and its ligand Jagged-1 in the liver. CONCLUSION: In summary, the regulatory effects of Rg5 on the Notch1 signaling pathway play a crucial role in modulating hepatic lipid metabolism and preventing hepatocyte apoptosis, thereby impeding the progression of NASH. These findings highlight the potential of Rg5 as a promising natural product for interventions targeting NASH.


Subject(s)
Ginsenosides , Non-alcoholic Fatty Liver Disease , Mice , Animals , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Liver , Liver Cirrhosis/metabolism , Signal Transduction , Hep G2 Cells , Diet, High-Fat/adverse effects , Apoptosis , Lipids , Mice, Inbred C57BL , Disease Models, Animal
18.
Sci Rep ; 13(1): 22817, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38129431

ABSTRACT

Exploring the cross-sensitivity between land use transformation and ecological service values in rare earth mining areas is of great significance for the development of ecological protection and restoration in rare earth mining areas. To study the impact of land use changes on ecosystem service functions in rare earth mining areas, firstly, the land use change trends in the study area from 2009 to 2019 were analyzed using the land transfer matrix; then the distribution of ecosystem service values and the flow direction of ecosystem service values in the study area were measured based on the ecosystem service value equivalents; a spatial autocorrelation analysis was done on the ecosystem service values to explore their spatial distribution patterns; and finally, the cross-sensitivity coefficient was used to quantitatively assess the extent and direction of the impact of land use change on ecosystem service values. The results show that the land use types in the study area are mainly forest land and farmland, with woodland accounting for the highest proportion of the study area. The ESV changes in the study area are consistent with the trend of land use transformation, with the overall increase and decrease being comparable, and the decrease in ESV is mainly concentrated in the areas with a large increase in mining land and construction land; during the study period, the study area was significantly reduced with low-low cluster areas and the ecological environment was improved; from 2009 to 2014, the ecological sensitivity coefficient is more variable, and is more sensitive to the net conversion between water and desert, from 2014 to 2019, the ecological sensitivity coefficient is less variable, and the most sensitive is the net conversion between cultivated land and water. The study area should be reasonably developed for rare earth resources and the ecological environment around the mining area should be reasonably protected to build an ecological security pattern.

SELECTION OF CITATIONS
SEARCH DETAIL