Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
1.
Int J Biol Macromol ; : 131886, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38677696

ABSTRACT

Type V collagen is an essential component of the extracellular matrix (ECM), and its remodeling releases specific protein fragments that can specifically inhibit endothelial cell responses such as proliferation, migration, and invasion. In this study, we have successfully constructed two engineered strains of Pichia pastoris capable of producing recombinant collagen through a new genetic engineering approach. Through high-density fermentation, the expression of 1605 protein and 1610 protein could reach 2.72 g/L and 4.36 g/L. With the increase of repetition times, the yield also increased. Bioactivity analysis showed that recombinant collagen could block the angiogenic effect of FGF-2 on endothelial cells by eliminating FGF-2-induced endothelial cell migration and invasion. Collectively, the recombinant proteins we successfully expressed have a wide range of potential for inhibiting angiogenesis in the biomaterials and biomedical fields.

2.
Phytomedicine ; 128: 155577, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608488

ABSTRACT

BACKGROUND: Gastrointestinal mucositis stands as one of the most severe side effects of irinotecan (CPT-11). however, only palliative treatment is available at present. Therefore, there is an urgent need for adjunctive medications to alleviate the side effects of CPT-11. PURPOSE: In this study, our objective was to explore whether ginsenoside Rh4 could serve as a modulator of the gut microbiota and an adjunctive agent for chemotherapy, thereby alleviating the side effects of CPT-11 and augmenting its anti-tumor efficacy. STUDY DESIGN: A CPT-11-induced gastrointestinal mucositis model was used to investigate whether ginsenoside Rh4 alleviated CPT-11-induced gastrointestinal mucositis and enhanced the anti-tumor activity of CPT-11. METHODS: In this study, we utilized CT26 cells to establish a xenograft tumor model, employing transcriptomics, genomics, and metabolomics techniques to investigate the impact of ginsenoside Rh4 on CPT-11-induced gastrointestinal mucositis and the effect on the anti-tumor activity of CPT-11. Furthermore, we explored the pivotal role of gut microbiota and their metabolites through fecal microbiota transplantation (FMT) experiments and supplementation of the key differential metabolite, hyodeoxycholic acid (HDCA). RESULTS: The results showed that ginsenoside Rh4 repaired the impairment of intestinal barrier function and restored intestinal mucosal homeostasis in a gut microbiota-dependent manner. Ginsenoside Rh4 treatment modulated gut microbiota diversity and upregulated the abundance of beneficial bacteria, especially Lactobacillus_reuteri and Akkermansia_muciniphila, which further regulated bile acid biosynthesis, significantly promoted the production of the beneficial secondary bile acid hyodeoxycholic acid (HDCA), thereby alleviating CPT-11-induced gut microbiota dysbiosis. Subsequently, ginsenoside Rh4 further alleviated gastrointestinal mucositis through the TGR5-TLR4-NF-κB signaling pathway. On the other hand, ginsenoside Rh4 combination therapy could further reduce the weight and volume of colon tumors, promote tumor cell apoptosis, and enhance the anti-tumor activity of CPT-11 by inhibiting the PI3K-Akt signaling pathway, thus exerting a synergistic anti-tumor effect. CONCLUSION: In summary, our findings confirm that ginsenoside Rh4 can alleviate CPT-11-induced gastrointestinal mucositis and enhance the anti-tumor activity of CPT-11 by modulating gut microbiota and its related metabolites. Our study validates the potential of ginsenoside Rh4 as a modulator of the gut microbiota and an adjunctive agent for chemotherapy, offering new therapeutic strategies for addressing chemotherapy side effects and improving chemotherapy efficacy.


Subject(s)
Gastrointestinal Microbiome , Ginsenosides , Irinotecan , Mucositis , Ginsenosides/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Irinotecan/pharmacology , Mucositis/chemically induced , Mucositis/drug therapy , Mice , Cell Line, Tumor , Mice, Inbred BALB C , Fecal Microbiota Transplantation , Xenograft Model Antitumor Assays , Male , Antineoplastic Agents, Phytogenic/pharmacology
3.
J Agric Food Chem ; 72(17): 9867-9879, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38602268

ABSTRACT

Dysbiosis of gut microbiota is believed to be associated with inflammatory bowel disease (IBD). Ginsenoside compound K (CK), the main metabolite of Panax ginseng ginsenoside, has proven effective as an anti-inflammatory agent in IBD. However, the mechanisms by which CK modulates gut microbiota to ameliorate IBD remain poorly understood. Herein, CK demonstrated the potential to suppress the release of proinflammatory cytokines by gut microbiota modulation. Notably, supplementation with CK promoted the restoration of a harmonious balance in gut microbiota, primarily by enhancing the populations of Lactobacillus and Akkermansia. Furthermore, CK considerably elevated the concentrations of tryptophan metabolites derived from Lactobacillus that could activate the aryl hydrocarbon receptor. Overall, the promising alleviative efficacy of CK primarily stemmed from the promotion of Lactobacillus growth and production of tryptophan metabolites, suggesting that CK should be regarded as a prospective prebiotic agent for IBD in the future.


Subject(s)
Dextran Sulfate , Gastrointestinal Microbiome , Ginsenosides , Inflammatory Bowel Diseases , Mice, Inbred C57BL , Receptors, Aryl Hydrocarbon , Tryptophan , Animals , Humans , Male , Mice , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/drug effects , Dextran Sulfate/pharmacology , Gastrointestinal Microbiome/drug effects , Ginsenosides/metabolism , Ginsenosides/pharmacology , Ginsenosides/administration & dosage , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/microbiology , Panax/chemistry , Panax/metabolism , Panax/microbiology , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Tryptophan/metabolism
4.
Biomater Sci ; 12(10): 2504-2520, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38529571

ABSTRACT

In recent years, the design and synthesis of Janus hydrogels have witnessed a thriving development, overcoming the limitations of single-performance materials and expanding their potential applications in tissue engineering and regenerative medicine. Janus hydrogels, with their exceptional mechanical properties and excellent biocompatibility, have emerged as promising candidates for various biomedical applications, including tissue engineering and regenerative therapies. In this review, we present the latest progress in the synthesis of Janus hydrogels using commonly employed preparation methods. We elucidate the surface and interface interactions of these hydrogels and discuss the enhanced properties bestowed by the unique "Janus" structure in biomaterials. Additionally, we explore the applications of Janus hydrogels in facilitating regenerative therapies, such as drug delivery, wound healing, tissue engineering, and biosensing. Furthermore, we analyze the challenges and future trends associated with the utilization of Janus hydrogels in biomedical applications.


Subject(s)
Biocompatible Materials , Hydrogels , Regenerative Medicine , Tissue Engineering , Hydrogels/chemistry , Biocompatible Materials/chemistry , Humans , Wound Healing/drug effects , Drug Delivery Systems , Animals
5.
Research (Wash D C) ; 7: 0332, 2024.
Article in English | MEDLINE | ID: mdl-38533182

ABSTRACT

2,2',7,7'-Tetrakis(N,N-di-p-methoxyphenyl)-amine-9,9'-spirobifluorene (Spiro-OMeTAD) represents the state-of-the-art hole-transporting material (HTM) in n-i-p perovskite solar cells (PSCs). However, its susceptibility to stability issues has been a long-standing concern. In this study, we embark on a comprehensive exploration of the untapped potential within the family of spiro-type HTMs using an innovative anisotropic regulation strategy. Diverging from conventional approaches that can only modify spirobifluorene with single functional group, this approach allows us to independently tailor the two orthogonal components of the spiro-skeleton at the molecular level. The newly designed HTM, SF-MPA-MCz, features enhanced thermal stability, precise energy level alignment, superior film morphology, and optimized interfacial properties when compared to Spiro-OMeTAD, which contribute to a remarkable power conversion efficiency (PCE) of 24.53% for PSCs employing SF-MPA-MCz with substantially improved thermal stability and operational stability. Note that the optimal concentration for SF-MPA-MCz solution is only 30 mg/ml, significantly lower than Spiro-OMeTAD (>70 mg/ml), which could remarkably reduce the cost especially for large-area processing in future commercialization. This work presents a promising avenue for the versatile design of multifunctional HTMs, offering a blueprint for achieving efficient and stable PSCs.

6.
J Pharm Anal ; 14(2): 259-275, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38464791

ABSTRACT

The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer (CRC). However, the effect of ginsenoside Rk3 (Rk3) on CRC and gut microbiota remains unclear. Therefore, the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation. Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors, repairs intestinal barrier damage, and regulates the gut microbiota imbalance caused by CRC, including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis, and clearance of pathogenic Desulfovibrio. Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids, particularly by upregulating glutamine, which has the potential to regulate the immune response. Furthermore, we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells (ILC3s) and T helper 17 (Th17) signaling pathways, which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) signaling pathway. These results indicate that Rk3 modulates gut microbiota, regulates ILC3s immune response, and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors. More importantly, the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota. In summary, these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC.

7.
Food Chem Toxicol ; 186: 114587, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461953

ABSTRACT

Hepatocellular carcinoma (HCC) is the third most lethal cancer in the world. Recent studies have shown that suppression of autophagy plays an important role in the development of HCC. Ginsenoside Rk1 is a protopanaxadiol saponin isolated from ginseng and has a significant anti-tumor effect, but its role and mechanism in HCC are still unclear. In this study, a mouse liver cancer model induced by diethylnitrosamine and carbon tetrachloride (DEN + CCl4) was employed to investigate the inhibitory effect of Rk1 on HCC. The results demonstrate that ginsenoside Rk1 effectively inhibits liver injury, liver fibrosis, and cirrhosis during HCC progression. Transcriptome data analysis of mouse liver tissue reveals that ginsenoside Rk1 significantly regulates the AMPK/mTOR signaling pathway, autophagy pathway, and apoptosis pathway. Subsequent studies show that ginsenoside Rk1 induces AMPK protein activation, upregulates the expression of autophagy marker LC3-II protein to promote autophagy, and then downregulates the expression of Bcl2 protein to trigger a caspase cascade reaction, activating AMPK/mTOR-induced toxic autophagy to promote cells death. Importantly, co-treatment of ginsenoside Rk1 with autophagy inhibitors can inhibit apoptosis of HCC cells, once again demonstrating the ability of ginsenoside Rk1 to promote autophagy-dependent apoptosis. In conclusion, our study demonstrates that ginsenoside Rk1 inhibits the development of primary HCC by activating toxic autophagy to promote apoptosis through the AMPK/mTOR pathway. These findings confirm that ginsenoside Rk1 is a promising new strategy for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Ginsenosides , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Autophagy
8.
J Agric Food Chem ; 72(13): 7266-7278, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38523338

ABSTRACT

Ginseng oligopeptides are naturally occurring small-molecule peptides extracted from ginseng that exhibit positive effects on health and longevity. However, the current industrial production of ginseng oligopeptides primarily relies on plant extraction and chemical synthesis. In this study, we proposed a novel genetic engineering approach to produce active ginseng peptides through multicopy tandem insertion (5 and 15 times). The recombinant ginseng peptides were successfully produced from engineered Bacillus subtilis with an increasing yield from 356.55 to 2900 mg/L as the repeats multiple. Additionally, an oxidative stress-induced aging model caused by H2O2 was established to evaluate whether the recombinant ginseng peptides, without enzymatic hydrolysis into individual peptides, also have positive effects on antiaging. The results demonstrated that all two kinds of recombinant ginseng peptides could also delay cellular aging through various mechanisms, such as inhibiting cell cycle arrest, suppressing the expression of pro-inflammatory factors, and enhancing cellular antioxidant capacity.


Subject(s)
Bacillus subtilis , Panax , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Panax/chemistry , Hydrogen Peroxide/metabolism , Oxidative Stress , Oligopeptides/genetics , Oligopeptides/pharmacology , Oligopeptides/metabolism
9.
Phytomedicine ; 124: 155287, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176268

ABSTRACT

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a prevalent chronic liver disease that lacks an FDA-approved treatment medicine. Despite the known antitumor and hypoglycemic properties of Ginsenoside Rg5, its effects and underlying mechanisms in the context of NASH remain largely unexplored. PURPOSE: This study aims to investigate the effect of Rg5 on NASH mice induced by a high-fat diet and CCl4. STUDY DESIGN: In vivo experiments, a mouse NASH model was established by a HFHC diet plus intraperitoneal injection of low-dose CCl4. In vitro experiments, a cellular steatosis model was established using free fatty acids (FFA) induced HepG2 cells. In addition, a fibrogenesis model was established using HSC-LX2 cells. METHODS: The effects of Ginsenoside Rg5 on lipid accumulation and oxidative damage were analyzed by ELISA kit, H&E staining, Oil Red O staining, flow cytometry and Western blot. The effects of Ginsenoside Rg5 on liver fibrosis were analyzed by Masson staining, Sirus Red staining, immunohistochemistry and Western blot. The effect of Ginsenoside Rg5 on Notch1 signaling pathway in liver was studied by protein Oil Red staining, protein immunoblotting and immunofluorescence. RESULTS: In terms of lipid accumulation, Rg5 has the ability to regulate key proteins related to lipogenesis, thereby inhibiting hepatic lipid accumulation and oxidative stress. Additionally, Rg5 can reduce the occurrence of hepatocyte apoptosis by regulating the p53 protein. Moreover, after Rg5 intervention, the presence of fibrotic proteins (α-SMA, Collagen 1, TGF-ß) in the liver is significantly suppressed, thus inhibiting liver fibrosis. Lastly, Rg5 leads to a decrease in the expression levels of Notch1 and its ligand Jagged-1 in the liver. CONCLUSION: In summary, the regulatory effects of Rg5 on the Notch1 signaling pathway play a crucial role in modulating hepatic lipid metabolism and preventing hepatocyte apoptosis, thereby impeding the progression of NASH. These findings highlight the potential of Rg5 as a promising natural product for interventions targeting NASH.


Subject(s)
Ginsenosides , Non-alcoholic Fatty Liver Disease , Mice , Animals , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Liver , Liver Cirrhosis/metabolism , Signal Transduction , Hep G2 Cells , Diet, High-Fat/adverse effects , Apoptosis , Lipids , Mice, Inbred C57BL , Disease Models, Animal
10.
J Am Chem Soc ; 145(51): 28191-28203, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38091467

ABSTRACT

We demonstrate the effective establishment of long-range electrostatic interactions among colloidal silica nanospheres through acid treatment, enabling their assembly into colloidal crystals at remarkably low concentrations. This novel method overcomes the conventional limitation in colloidal silica assembly by removing entrapped NH4+ ions and enhancing the electrical double layer (EDL) thickness, offering a time-efficient alternative to increase electrostatic interactions compared with methods like dialysis. The increased EDL thickness facilitates the assembly of SiO2 nanospheres into a body-centered-cubic lattice structure at low particle concentrations, allowing for broad spectrum tunability and high tolerance to particle size polydispersity. Further, we uncover a disorder-order transition during colloidal crystallization at low particle concentrations, with the optimal concentration for crystal formation governed by both thermodynamic and kinetic factors. This work not only provides insights into assembly mechanisms but also paves the way for the design and functionalization of colloidal silica-based photonic crystals in diverse applications.

11.
Sci Rep ; 13(1): 22817, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38129431

ABSTRACT

Exploring the cross-sensitivity between land use transformation and ecological service values in rare earth mining areas is of great significance for the development of ecological protection and restoration in rare earth mining areas. To study the impact of land use changes on ecosystem service functions in rare earth mining areas, firstly, the land use change trends in the study area from 2009 to 2019 were analyzed using the land transfer matrix; then the distribution of ecosystem service values and the flow direction of ecosystem service values in the study area were measured based on the ecosystem service value equivalents; a spatial autocorrelation analysis was done on the ecosystem service values to explore their spatial distribution patterns; and finally, the cross-sensitivity coefficient was used to quantitatively assess the extent and direction of the impact of land use change on ecosystem service values. The results show that the land use types in the study area are mainly forest land and farmland, with woodland accounting for the highest proportion of the study area. The ESV changes in the study area are consistent with the trend of land use transformation, with the overall increase and decrease being comparable, and the decrease in ESV is mainly concentrated in the areas with a large increase in mining land and construction land; during the study period, the study area was significantly reduced with low-low cluster areas and the ecological environment was improved; from 2009 to 2014, the ecological sensitivity coefficient is more variable, and is more sensitive to the net conversion between water and desert, from 2014 to 2019, the ecological sensitivity coefficient is less variable, and the most sensitive is the net conversion between cultivated land and water. The study area should be reasonably developed for rare earth resources and the ecological environment around the mining area should be reasonably protected to build an ecological security pattern.

12.
ACS Omega ; 8(39): 36562-36568, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810647

ABSTRACT

We report two new series of compounds that show the ferroelectric nematic, NF, phase in which the terminal chain length is varied. The longer the terminal chain, the weaker the dipole-dipole interactions of the molecules are along the director and thus the lower the temperature at which the axially polar NF phase is formed. For homologues of intermediate chain lengths, between the non-polar and ferroelectric nematic phases, a wide temperature range nematic phase emerges with antiferroelectric character. The size of the antiparallel ferroelectric domains critically increases upon transition to the NF phase. In dielectric studies, both collective ("ferroelectric") and non-collective fluctuations are present, and the "ferroelectric" mode softens weakly at the N-NX phase transition because the polar order in this phase is weak. The transition to the NF phase is characterized by a much stronger lowering of the mode relaxation frequency and an increase in its strength, and a typical critical behavior is observed.

13.
J Am Chem Soc ; 145(42): 22885-22889, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37844128

ABSTRACT

Although reticular chemistry has commonly utilized mutually embracing tetrahedral metal complexes as crossing points to generate three-dimensional molecularly woven structures, weaving in two dimensions remains largely unexplored. We report a new strategy to access 2D woven COFs by controlling the angle of the usually linear linker, resulting in the successful synthesis of a 2D woven pattern based on chain-link fence. The synthesis was accomplished by linking aldehyde-functionalized copper(I) bisphenanthroline complexes with bent 4,4'-oxydianiline building units. This results in the formation of a crystalline solid, termed COF-523-Cu, whose structure was characterized by spectroscopic techniques and electron and X-ray diffraction techniques to reveal a molecularly woven, twofold-interpenetrated chain-link fence. The present work significantly advances the concept of molecular weaving and its practice in the design of complex chemical structures.

14.
J Agric Food Chem ; 71(44): 16669-16680, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37812684

ABSTRACT

ß-Glycosidase from Sulfolobus solfataricus (SS-BGL) is a highly effective biocatalyst for the synthesis of compound K (CK) from glycosylated protopanaxadiol ginsenosides. In order to improve the thermal stability of SS-BGL, molecular dynamics simulations were used to determine the residue-level binding energetics of ginsenoside Rd in the SS-BGL-Rd docked complex and to identify the top ten critical contributors. Target sites for mutations were determined using dynamic cross-correlation mapping of residues via the Ohm server to identify networks of distal residues that interact with the key binding residues. Target mutations were determined rationally based on site characteristics. Single mutants and then recombination of top hits led to the two most promising variants SS-BGL-Q96E/N97D/N302D and SS-BGL-Q96E/N97D/N128D/N302D with 2.5-fold and 3.3-fold increased half-lives at 95 °C, respectively. The enzyme activities relative to those of wild-type for ginsenoside conversion were 161 and 116%, respectively..


Subject(s)
Ginsenosides , Ginsenosides/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Plant Extracts/chemistry , Half-Life
15.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37756552

ABSTRACT

We present herein a custom-made, in situ, multimodal spin coater system with an integrated heating stage that can be programmed with spinning and heating recipes and that is coupled with synchrotron-based, grazing-incidence wide- and small-angle x-ray scattering. The spin coating system features an adaptable experimental chamber, with the ability to house multiple ancillary probes such as photoluminescence and visible optical cameras, to allow for true multimodal characterization and correlated data analysis. This system enables monitoring of structural evolutions such as perovskite crystallization and polymer self-assembly across a broad length scale (2 Å-150 nm) with millisecond temporal resolution throughout a complete thin film fabrication process. The use of this spin coating system allows scientists to gain a deeper understanding of temporal processes of a material system, to develop ideal conditions for thin film manufacturing.

16.
Precis Chem ; 1(7): 443-451, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37771515

ABSTRACT

Photoinduced interfacial charge transfer plays a critical role in energy conversion involving van der Waals (vdW) heterostructures constructed of inorganic nanostructures and organic materials. However, the effect of molecular stacking configurations on charge transfer dynamics is less understood. In this study, we demonstrated the tunability of interfacial charge separation in a type-II heterojunction between monolayer (ML) WS2 and an organic semiconducting molecule [2-(3″',4'-dimethyl-[2,2':5',2':5″,2″'-quaterthiophen]-5-yl)ethan-1-ammonium halide (4Tm)] by rational design of relative stacking configurations. The assembly between ML-WS2 and the 4Tm molecule forms a face-to-face stacking when 4Tm molecules are in a self-aggregation state. In contrast, a face-to-edge stacking is observed when 4Tm molecule is incorporated into a 2D organic-inorganic hybrid perovskite lattice. The face-to-face stacking was proved to be more favorable for hole transfer from WS2 to 4Tm and led to interlayer excitons (IEs) emission. Transient absorption measurements show that the hole transfer occurs on a time scale of 150 fs. On the other hand, the face-to-edge stacking resulted in much slower hole transfer without formation of IEs. This inefficient hole transfer occurs on a similar time scale as A exciton recombination in WS2, leading to the formation of negative trions. These investigations offer important fundamental insights into the charge transfer processes at organic-inorganic interfaces.

17.
J Agric Food Chem ; 71(39): 14263-14275, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37726223

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with increasing morbidity. Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of the insulin signaling cascade and has attracted intensive investigation in the T2DM study. Ginseng is widely used to treat metabolic diseases, while the effects of ginsenoside F4 (F4) on T2DM have remained unknown. Here, we identify F4 as an inhibitor of skeletal muscle insulin resistance. The results showed that F4 significantly improved the hyperglycemic state of db/db mice, alleviated dyslipidemia, and promoted skeletal muscle glucose uptake. This phenomenon was closely related to the inhibition of the PTP1B activity. On the one hand, the inhibition of PTP1B activity by F4 resulted in increased insulin receptor (INSR) and insulin receptor substrate 1 tyrosine phosphorylation and enhanced insulin sensitivity. On the other hand, F4 as a PTP1B inhibitor inhibited the inositol-requiring enzyme 1 (IRE-1)/recombinant TNF receptor associated factor 2 (TRAF2)/c-Jun N-terminal kinase signaling pathway and alleviated skeletal muscle endoplasmic reticulum (ER) stress, thereby reducing IRS-1 serine phosphorylation. Both finally activated the PI3K/AKT signaling pathway and promoted glucose transporter protein 4 translocation to the cell membrane for glucose uptake. Taken together, our experiments demonstrate that F4 activates the insulin signaling pathway by inhibiting the activity of PTP1B while inhibiting the IRE-1/TRAF2/JNK signaling pathway, enhancing insulin sensitivity, and alleviating ER stress in the skeletal muscle of db/db mice. Our results indicate that F4 can be used as a PTP1B inhibitor for the treatment of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Insulin Resistance/physiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , TNF Receptor-Associated Factor 2/metabolism , Muscle, Skeletal/metabolism , Insulin/metabolism , Phosphorylation , Glucose/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1
18.
J Agric Food Chem ; 71(37): 13783-13794, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37676640

ABSTRACT

Alzheimer's disease (AD) is a primary neurodegenerative disease. It can be caused by aging and brain trauma and severely affects the abilities of cognition and memory of patients. Therefore, it seriously threatens the mental and physical health of humans worldwide. As a traditional Chinese medicine, ginsenosides have been proven to have a variety of pharmacological activities. Ginsenoside Rh4 (Rh4) is one of the rare ginsenosides with higher pharmacological activity than ordinary ginsenosides, but its effect on alleviating AD and its molecular mechanism have not been studied. Here, we investigated the anti-AD effects of Rh4 and its potential mechanisms using an AD mouse model induced by a combination of AlCl3·6H2O and d-galactose. The results showed that Rh4 could significantly improve the ability of cognizance and reduce neuronal damage in mice. Concurrently, Rh4 attenuates amyloid ß accumulation, increases the density of dendritic spines, and logically inhibits synaptic structural damage as a result of neuronal excessive apoptosis and autophagy. Rh4 can not only inhibit the inflammatory response caused by the overactivation of microglia and astrocytes, reduce the levels of pro-inflammatory factors, increase the level of antioxidant enzymes in serum, and significantly improve the activity of antioxidant enzyme SOD1 in the hippocampus but also inhibit the hyperphosphorylation of tau protein in the hippocampus of mice by regulating the Wnt2b/GSK-3ß/SMAD4 signaling pathway. Together, this study provides a theoretical basis for Rh4 in the treatment of AD and reveals that Rh4 is a potential drug for the treatment of AD.


Subject(s)
Alzheimer Disease , Ginsenosides , Neurodegenerative Diseases , Humans , Animals , Mice , Amyloid beta-Peptides/genetics , tau Proteins/genetics , Ginsenosides/pharmacology , Glycogen Synthase Kinase 3 beta/genetics , Neuroinflammatory Diseases , Antioxidants , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Signal Transduction
19.
ACS Nano ; 17(18): 18392-18401, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37668312

ABSTRACT

Carbon superstructures are widely applied in energy and environment-related areas. Among them, the flower-like polyacrylonitrile (PAN)-derived carbon materials have shown great promise due to their high surface area, large pore volume, and improved mass transport. In this work, we report a versatile and straightforward method for synthesizing one-dimensional (1D) nanostructured fibers and two-dimensional (2D) nanostructured thin films based on flower-like PAN chemistry by taking advantage of the nucleation and growth behavior of PAN. The resulting nanofibers and thin films exhibited distinct morphologies with intersecting PAN nanosheets, which formed through rapid nucleation on existing PAN. We further constructed a variety of hierarchical PAN superstructures based on different templates, solvents, and concentrations. These PAN nanosheet superstructures can be readily converted to carbon superstructures. As a demonstration, the nanostructured thin film exhibited a contact angle of ∼180° after surface modification with fluoroalkyl monolayers, which is attributed to high surface roughness enabled by the nanosheet assemblies. This study offers a strategy for the synthesis of nanostructured carbon materials for various applications.

20.
ACS Nanosci Au ; 3(4): 295-309, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37601923

ABSTRACT

In our continuing pursuit to generate, understand, and control the morphology of organic nanofilaments formed by molecules with a bent molecular shape, we here report on two bent-core molecules specifically designed to permit a phase or morphology change upon exposure to an applied electric field or irradiation with UV light. To trigger a response to an applied electric field, conformationally rigid chiral (S,S)-2,3-difluorooctyloxy side chains were introduced, and to cause a response to UV light, an azobenzene core was incorporated into one of the arms of the rigid bent core. The phase behavior as well as structure and morphology of the formed phases and nanofilaments were analyzed using differential scanning calorimetry, cross-polarized optical microscopy, circular dichroism spectropolarimetry, scanning and transmission electron microscopy, UV-vis spectrophotometry, as well as X-ray diffraction experiments. Both bent-core molecules were characterized by the coexistence of two nanoscale morphologies, specifically helical nanofilaments (HNFs) and layered nanocylinders, prior to exposure to an external stimulus and independent of the cooling rate from the isotropic liquid. The application of an electric field triggers the disappearance of crystalline nanofilaments and instead leads to the formation of a tilted smectic liquid crystal phase for the material featuring chiral difluorinated side chains, whereas irradiation with UV light results in the disappearance of the nanocylinders and the sole formation of HNFs for the azobenzene-containing material. Combined results of this experimental study reveal that in addition to controlling the rate of cooling, applied electric fields and UV irradiation can be used to expand the toolkit for structural and morphological control of suitably designed bent-core molecule-based structures at the nanoscale.

SELECTION OF CITATIONS
SEARCH DETAIL
...