Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38498524

ABSTRACT

Climate is the most important environmental factor influencing yield during rice growth and development. To investigate the relationships between climate and yield under different crop rotation patterns and planting methods, three typical rotation patterns (vegetable-rice (V), rape-rice (R), and wheat-rice (W)) and two mechanical planting methods (mechanical transplanting (T1) and mechanical direct seeding (T2)) were established. The results showed that compared to the V rotation pattern, the average daily temperature (ADT) during the sowing to heading stage increased under both R and W rotation patterns, which significantly shortened the growth period. Thus, the effective accumulated temperature (EAT), photosynthetic capacity, effective panicle (EP), and spikelet per panicle (SP) under R and W rotation patterns significantly decreased, leading to reductions in grain yield (GY). VT2 had a higher ratio of productive tillers (RPT), relative chlorophyll content (SPAD), leaf area index (LAI), and net photosynthetic rate (Pn) than those of VT1, which significantly increased panicle dry matter accumulation (DMA), resulting in an increase in GY. Although RT2 and WT2 had a higher RPT than those of RT1 and WT1, the GY of RT1 and WT1 decreased due to the significant reductions in EAT and photosynthetic capacity. Principal component analysis (PCA) showed that the comprehensive score for different rotation patterns followed the order of V > R > T with VT2 ranking first. The structural equation model (SEM) showed that EAT and ADT were the most important climate factors affecting yield, with total effects of 0.520 and -0.446, respectively. In conclusion, mechanical direct seeding under vegetable-rice rotation pattern and mechanical transplanting under rape-rice or wheat-rice rotation pattern were the rice-planting methods that optimized the climate resources in southwest China.

2.
Sci Rep ; 9(1): 5653, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30948780

ABSTRACT

The application of nitrogen (N) fertilizer deep in soil at the same time as mechanical transplanting of rice seedlings is an effective alternative to conventional broadcasting of fertilizer, but its effects on yields and profitability have not been analysed in detail. Here, we analysed the effects of a side deep application of N fertilizer at transplanting on the N uptake, N use efficiency (NUE), grain yield, and economic profitability of two rice (Oryza sativa L.) cultivars; Yongxian15 (early season) and Yongyou1540 (middle/late season). In the field experiments, two types of N fertilizer (urea (U) and controlled-release urea (CRU)) were surface broadcasted manually (B) or mechanically fertilized at 5.5 ± 0.5 cm soil depth (M) (UB, UM, and CRUM treatments, respectively). The blank control had no N fertilizer (N0). Each N-fertilizer treatment had similar effects on N uptake, grain yield, NUE, and economic profitability in the early, middle, and late seasons. Compared with manually applied fertilizer, mechanically applied fertilizer increased grain yield and NUE in both cultivars. In Yongxian15 and Yongyou1540, the mechanical side deep application of N-fertilizer increased the N recovery efficiency by 62.50-91.57% and 24.38-64.24%, respectively, the N agronomy efficiency by 33.65-63.14% and 22.64-44.70%, respectively; and the grain yield by 6.30-11.64% and 6.23-13.11%, respectively. The CRUM treatments had the highest benefit-cost ratio because of high gross returns and low fertilization costs. The mechanized side deep application of N fertilizer can increase the efficiency and profitability of rice production.


Subject(s)
Agriculture/methods , Fertilizers/analysis , Oryza/metabolism , Automation/instrumentation , Automation/methods , China , Edible Grain/chemistry , Edible Grain/metabolism , Nitrogen/analysis , Oryza/chemistry , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...