Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
iScience ; 25(6): 104365, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35620431

ABSTRACT

Characterization of covalency of intermolecular interactions in the van der Waals distance limit remains challenging because the interactions between molecules are weak, dynamic, and not measurable. Herein, we approach this issue in a series of supramolecular mixed-valence (MV) donor(D)-bridge(B)-acceptor(A) systems consisting of two bridged Mo2 units with a C6H6 molecule encapsulated, as characterized by the X-ray crystal structures. Comparative analysis of the intervalence charge transfer spectra in benzene and dichloromethane substantiates the strong electronic decoupling effect of the solvating C6H6 molecule that breaks down the dielectric solvation theory. Ab initio and DFT calculations unravel that the intermolecular orbital overlaps between the complex bridge and the C6H6 molecule alter the electronic states of the D-B-A molecule through intermolecular nuclear dynamics. This work exemplifies that site-specific intermolecular interaction can be exploited to control the chemical property of supramolecular systems and to elucidate the functionalities of side-chains in biological systems.

2.
Ann Diagn Pathol ; 56: 151847, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34742033

ABSTRACT

Muscle-invasive bladder carcinoma (MIBC) accounts for 25% of newly diagnosed bladder carcinomas (BCs) and presents a high risk of progression and metastasis. This study aimed to identify reliable biomarkers associated with muscle invasion and prognosis to identify potential therapeutic targets for MIBC. Four gene datasets were downloaded from the Gene Expression Omnibus, and the integrated differentially expressed genes (DEGs) were then subjected to gene ontology (GO) terms and pathway enrichment analyses. Correlation analysis between the expression of the top-ranking DEGs and pathological T stages was performed to identify the genes associated with early muscle invasion. The corresponding prognostic values were evaluated, and co-expressed genes mined in the cBioPortal database were loaded into ClueGo in Cytoscape for pathway enrichment analysis. Using data mining from the STRING and TCGA databases, protein-protein interaction and competitive endogenous RNA networks were constructed. In total, 645 integrated DEGs were identified and these were mainly enriched in 26 pathways, including cell cycle, bladder cancer, DNA replication, and PPAR signaling pathway. S100A7 expression was significantly increased from the T2 stage and showed significantly worse overall survival and disease-specific survival in patients with BC. In total, 144 genes co-expressed with S100A7 in BC were significantly enriched in the IL-17 pathway. S100A7 was predicted to directly interact with LYZ, which potentially shows competitive binding with hsa-mir-140 to affect the expression of six lncRNAs in MIBC. In conclusion, high S100A7 expression was predicted to be associated with early muscle invasion and poor survival in patients with BC.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , S100 Calcium Binding Protein A7/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder/pathology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Case-Control Studies , Computational Biology , Databases, Genetic , Female , Gene Expression Profiling , Gene Ontology , Humans , Male , Middle Aged , Neoplasm Invasiveness , Neoplasm Staging , Protein Interaction Maps , S100 Calcium Binding Protein A7/metabolism , Survival Analysis , Urinary Bladder/metabolism , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/mortality , Urinary Bladder Neoplasms/pathology
3.
Front Oncol ; 11: 685980, 2021.
Article in English | MEDLINE | ID: mdl-34249735

ABSTRACT

Bladder urothelial carcinoma (BC) is a fatal invasive malignancy and the most common malignancy of the urinary system. In the current study, we investigated the function and mechanisms of Neuropilin-1 (NRP1), the co-receptor for vascular endothelial growth factor, in BC pathogenesis and progression. The expression of NRP1 was evaluated using data extracted from GEO and HPA databases and examined in BC cell lines. The effect on proliferation, apoptosis, angiogenesis, migration, and invasion of BC cells were validated after NRP1 knockdown. After identifying differentially expressed genes (DEGs) induced by NRP1 silencing, GO/KEGG and IPA® bioinformatics analyses were performed and specific predicted pathways and targets were confirmed in vitro. Additionally, the co-expressed genes and ceRNA network were predicted using data downloaded from CCLE and TCGA databases, respectively. High expression of NRP1 was observed in BC tissues and cells. NRP1 knockdown promoted apoptosis and suppressed proliferation, angiogenesis, migration, and invasion of BC cells. Additionally, after NRP1 silencing the activity of MAPK signaling and molecular mechanisms of cancer pathways were predicted by KEGG and IPA® pathway analysis and validated using western blot in BC cells. NRP1 knockdown also affected various biological functions, including antiviral response, immune response, cell cycle, proliferation and migration of cells, and neovascularisation. Furthermore, the main upstream molecule of the DEGs induced by NRP1 knockdown may be NUPR1, and NRP1 was also the downstream target of NUPR1 and essential for regulation of FOXP3 expression to activate neovascularisation. DCBLD2 was positively regulated by NRP1, and PPAR signaling was significantly associated with low NRP1 expression. We also found that NRP1 was a predicted target of miR-204, miR-143, miR-145, and miR-195 in BC development. Our data provide evidence for the biological function and molecular aetiology of NRP1 in BC and for the first time demonstrated an association between NRP1 and NUPR1, FOXP3, and DCBLD2. Specifically, downregulation of NRP1 contributes to BC progression, which is associated with activation of MAPK signaling and molecular mechanisms involved in cancer pathways. Therefore, NRP1 may serve as a target for new therapeutic strategies to treat BC and other cancers.

5.
Nat Commun ; 12(1): 456, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33469004

ABSTRACT

The semiclassical models of nonadiabatic transition were proposed first by Landau and Zener in 1932, and have been widely used in the study of electron transfer (ET); however, experimental demonstration of the Landau-Zener formula remains challenging to observe. Herein, employing the Hush-Marcus theory, thermal ET in mixed-valence complexes {[Mo2]-(ph)n-[Mo2]}+ (n = 1-3) has been investigated, spanning the nonadiabatic throughout the adiabatic limit, by analysis of the intervalence transition absorbances. Evidently, the Landau-Zener formula is valid in the adiabatic regime in a broader range of conditions than the theoretical limitation known as the narrow avoided-crossing. The intermediate system is identified with an overall transition probability (κel) of ∼0.5, which is contributed by the single and the first multiple passage. This study shows that in the intermediate regime, the ET kinetic results derived from the adiabatic and nonadiabatic formalisms are nearly identical, in accordance with the Landau-Zener model. The obtained insights help to understand and control the ET processes in biological and chemical systems.

6.
iScience ; 22: 269-287, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31805432

ABSTRACT

Studies of intermolecular interactions enhance our knowledge of chemistry across molecular and supramolecular levels. Here, we show that host-guest quadrupolar interaction has a profound influence on the molecular system. With covalently bonded dimolybdenum complex units as the electron donor (D) and acceptor (A) and a thienylene group (C4H2S) as the bridge (B), the mixed-valence D-B-A complexes are shaped with clefts in the middle of the molecule. Interestingly, in aromatic solvents, the D-A electronic coupling constants (Hab) and electron transfer rates (ket) are dramatically reduced. Theoretical computations indicate that an aromatic molecule is encapsulated in the cleft of the D-B-A array; quadrupole-quadrupole interaction between the guest molecule and the C4H2S bridge evokes a charge redistribution, which increases the HOMO-LUMO energy gap, intervening in the through-bond electron transfer. These results demonstrate that a supramolecular system is unified underlying the characteristics of the assembled molecules through constitutional, electronic, and energetic complementarities.

7.
ACS Appl Mater Interfaces ; 11(27): 24006-24017, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31241882

ABSTRACT

Quadruply bonded dimolybdenum complexes with a σ2π4δ2 electronic configuration for the ground state have rich metal-centered photochemistry. An earlier study showed that stoichiometric or less amount of molecular hydrogen was produced upon irradiation by ultraviolet light (λ = 254 nm) of K4Mo2(SO4)4 in sulfuric acid solution, which was attributed to the reductive capability of the ππ* excited state. To make use of the δ electrons for visible-light-induced photocatalytic hydrogen evolution, a multicomponent heterogeneous photocatalytic system containing K4Mo2(SO4)4 photosensitizer, TiO2 electron relay, and MoS2 cocatalyst is designed and tested. With ascorbic acid added as a sacrificial reagent, irradiation by artificial sunlight (AM 1.5) on the reaction in 5 M H2SO4 has produced 13 400 µmol g-1 of molecular hydrogen (based on the Mo2 complex), which is 30 times higher than the hydrogen yield obtained from the reaction of bare K4Mo2(SO4)4 with H2SO4 under ultraviolet light irradiation. Further improvement of hydrogen evolution is achieved by addition of oxalic acid, along with an electron donor, which gives an additional 50% increase in H2 yield. Spectroscopic analyses indicate that, in this case, a junction between the Mo2 complex and TiO2 is built by the oxalate bridging ligand, which facilitates charge injection and separation from the Mo2 core. This Mo2-TiO2-MoS2 system has achieved a high hydrogen evolution rate up to 4570 µmol g-1 h-1. The efficiency of K4Mo2(SO4)4 as a metal-centered photosensitizer is also proved by parallel experiments with a dye chromophore, fluorescein, which presents comparable H2 yields and hydrogen evolution rates. Most importantly, in this study, detailed analyses illustrate that the photocatalytic cycle with hydrogen gas as an outcome of the reaction is established by involvement of the δδ* excited state generated by visible light irradiation. Therefore, this work shows the potential of quadruply bonded Mo2 complexes as photosensitizers for photocatalytic hydrogen evolution.

8.
Zhonghua Nan Ke Xue ; 24(9): 802-806, 2018 Sep.
Article in Chinese | MEDLINE | ID: mdl-32212458

ABSTRACT

OBJECTIVE: To gain a deeper insight into the local anatomic structures of the seminal vesicle and ejaculatory duct and provide some anatomic guidance in seminal vesiculoscopy. METHODS: We analyzed the clinical data on 48 cases of seminal vesiculoscopy and recorded the surgical approaches to the seminal vesicle and clinical effects after operation. At the same time, we made an anatomic study of the seminal vesicle, ejaculatory duct and prostatic utricle and simulated the surgical approaches in 12 adult pelvis specimens. RESULTS: The anatomical results accorded well with the surgical findings. The ejaculatory ducts failed to be revealed for 52.1%(25/48), but 93.8%(45/48) of the operations were completed through different approaches into the seminal vesicle. CONCLUSIONS: Transurethral seminal vesiculoscopy can be applied in the treatment of seminal tract and seminal vesicle diseases, but has its obvious limitations and has to be used with other strategies to achieve better results.

9.
Inorg Chem ; 55(12): 6315-22, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27243960

ABSTRACT

Using 2,6-naphthalenedicarboxylate and its thiolated derivatives as bridging ligands, three Mo2 dimers of the type [Mo2(DAniF)3](E2CC10H6CE2)[Mo2(DAniF)3] (DAniF = N,N'-di-p-anisylformamidinate; E = O, S) have been synthesized and characterized by X-ray diffraction. These compounds can be generally formulated as [Mo2]-naph-[Mo2], where the complex unit [Mo2] ([Mo2(DAniF)3(µ-E2C)]) functions as an electron donor (acceptor) and the naphthalene (naph) group is the bridge. The mixed-valence (MV) complexes, generated by one-electron oxidation of the neutral precursors, display weak, very broad intervalence charge-transfer absorption bands in the near-to-mid-IR regions. The electronic coupling matrix elements for the MV complexes, Hab = 390-570 cm(-1), are calculated from the Mulliken-Hush equation, which fall between those for the phenyl (ph) and biphenyl (biph) analogues reported previously. The three series consisting of three complexes with the same [Mo2] units exhibit exponential decay of Hab as the bridge changes from ph to biph via naph, with decay factors of 0.21-0.17 Å(-1). Therefore, it is evidenced that while the extent of the bridge conjugacy varies, the electronic coupling between the two [Mo2] units is dominated by the Mo2···Mo2 separation. The absorption band energies for metal-to-ligand charge transfer are in the middle of those for the ph and biph analogues, which is consistent with variation of the HOMO-LUMO energy gaps for the complex series. These results indicate that the interplay of the bridge length and conjugacy is to affect the enegy for charge transfer crossing the intervening moiety, in accordance with a superechange mechanism.

10.
Inorg Chem ; 54(23): 11314-22, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26579936

ABSTRACT

In order to evaluate the impact of bridge conformation on electronic coupling in donor-bridge-acceptor triad systems, two Mo2 dimers, [Mo2(DAniF)3]2[µ-1,4-{C(O)NH}2-Naph] (1, DAniF = N,N'-di(p-anisyl)formamidinate and Naph = naphthalenyl) and [Mo2(DAniF)3]2[µ-1,4-(CS2)2-2,5-Me2C6H2] (2), have been synthesized and structurally characterized. These two compounds feature a large dihedral angle (>60°) between the central aromatic ring and the plane defined by the Mo-Mo bond vectors, which is distinct from the previously reported phenylene bridged analogues [Mo2(DAniF)3]2[µ-1,4-{C(O)NH}2-ph] (I) and [Mo2(DAniF)3]2[µ-1,4-(CS2)2-C6H4] (II), respectively. Unusual optical behaviors are observed for the mixed-valence (MV) species (1(+) and 2(+)), generated by single-electron oxidation. While 2(+) exhibits a weak intervalence charge transfer (IVCT) absorption band in the near-IR region, the IVCT band is absent in the spectrum of 1(+), which is quite different from what observed for I(+) and II(+). Optical analyses, based on superexchange formalism and Hush model, indicate that, in terms of Robin-Day classification, mixed-valence species 1(+) belongs to the electronically uncoupled Class I and complex 2(+), with Hab = 220 cm(-1), is assigned to the weakly coupled Class II. Together with I(+) and II(+), the four MV complexes complete a transition from Class I to Class II-III borderline as a result of manipulating the geometric topology of the bridge. Given the structural and electronic features for the molecular systems, the impacts of electrostatic interaction (through-space) and electron resonance (through-bond) on electronic coupling are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...