Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Mol Ther Nucleic Acids ; 35(1): 102126, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38352859

ABSTRACT

Activating cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) holds great potential for cancer immunotherapy by eliciting type-I interferon (IFN-I) responses. Yet, current approaches to cGAS-STING activation rely on STING agonists, which suffer from difficult formulation, poor pharmacokinetics, and marginal clinical therapeutic efficacy. Here, we report nature-inspired oligonucleotide, Svg3, as a cGAS agonist for cGAS-STING activation in tumor combination immunotherapy. The hairpin-shaped Svg3 strongly binds to cGAS and enhances phase separation to form Svg3-cGAS liquid-like droplets. This results in cGAS-specific immunoactivation and robust IFN-I responses. Remarkably, Svg3 outperforms several state-of-the-art STING agonists in murine and human cells/tissues. Nanoparticle-delivered Svg3 reduces tumor immunosuppression and potentiates immune checkpoint blockade therapeutic efficacy of multiple syngeneic tumor models in wild-type mice, but in neither cGas-/- nor Sting-/- mice. Overall, these results demonstrate the great potential of Svg3 as a cGAS agonistic oligonucleotide for cancer combination immunotherapy.

2.
Acc Chem Res ; 56(21): 2933-2943, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37802125

ABSTRACT

The cyclic GMP-AMP synthase-stimulator interferon gene (cGAS-STING) pathway is an emerging therapeutic target for the prophylaxis and therapy of a variety of diseases, ranging from cancer, infectious diseases, to autoimmune disorders. As a cytosolic double stranded DNA (dsDNA) sensor, cGAS can bind with relatively long dsDNA, resulting in conformational change and activation of cGAS. Activated cGAS catalyzes the conversion of adenosine triphosphate (ATP) and guanosine triphosphate (GTP) into cGAMP, a cyclic dinucleotide (CDN). CDNs, including 2'3'-cGAMP, stimulate adapter protein STING on the endoplasmic membrane, triggering interferon regulatory factor 3 (IRF3) phosphorylation and nuclear factor kappa B (NF-κB) activation. This results in antitumor and antiviral type I interferon (IFN-I) responses. Moreover, cGAS-STING overactivation and the resulting IFN-I responses have been associated with a number of inflammatory and autoimmune diseases. This makes cGAS-STING appealing immunomodulatory targets for the prophylaxis and therapy of various related diseases. However, drug development of CDNs and CDN derivatives is challenged by their limited biostability, difficult formulation, poor pharmacokinetics, and inefficient tissue accumulation and cytosolic delivery. Though recent synthetic small molecular CDN- or non-CDN-based STING agonists have been reported with promising preclinical therapeutic efficacy, their therapeutic efficacy and safety remain to be fully evaluated preclinically and clinically. Therefore, it is highly desirable and clinically significant to advance drug development for cGAS-STING activation by innovative approaches, such as drug delivery systems and drug development for pharmacological immunomodulation of cGAS. In this Account, we summarize our recent research in the engineering and delivery of immunostimulatory or immunoregulatory modulators for cGAS and STING for the immunotherapy of cancer and autoimmune diseases. To improve the delivery efficiency of CDNs, we developed ionizable and pH-responsive polymeric nanocarriers to load STING agonists, aiming to improve the cellular uptake and facilitate the endosomal escape to induce efficient STING activation. We also codelivered STING agonists with complementary immunostimulatants in nanoparticle-in-hydrogel composites to synergetically elicit potent innate and adaptive antitumor responses that eradicate local and distant large tumors. Further, taking advantage of the simplicity of manufacturing and the established nucleic acid delivery system, we developed oligonucleotide-based cGAS agonists as immunostimulant immunotherapeutics as well as adjuvants for peptide antigens for cancer immunotherapy. To suppress the overly strong proinflammatory responses associated with cGAS-STING overactivation in some of the autoimmune disorders, we devised nanomedicine-in-hydrogel (NiH) that codelivers a cGAS inhibitor and cell-free DNA (cfDNA)-scavenging cationic nanoparticles (cNPs) for systemic immunosuppression in rheumatoid arthritis (RA) therapy. Lastly, we discussed current drug development by targeting cGAS-STING for cancer, infectious diseases, and autoimmune diseases, as well as the potential opportunities for utilizing cGAS-STING pathway for versatile applications in disease treatment.


Subject(s)
Autoimmune Diseases , Communicable Diseases , Interferon Type I , Neoplasms , Humans , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Interferon Type I/metabolism , DNA/metabolism , Neoplasms/therapy , Immunotherapy , Immunologic Factors , Adjuvants, Immunologic , Hydrogels
3.
Theranostics ; 13(13): 4304-4315, 2023.
Article in English | MEDLINE | ID: mdl-37649594

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and lethal type of adult brain cancer. Current GBM standard of care, including radiotherapy, often ends up with cancer recurrence, resulting in limited long-term survival benefits for GBM patients. Immunotherapy, such as immune checkpoint blockade (ICB), has thus far shown limited clinical benefit for GBM patients. Therapeutic vaccines hold great potential to elicit anti-cancer adaptive immunity, which can be synergistically combined with ICB and radiotherapy. Peptide vaccines are attractive for their ease of manufacturing and stability, but their therapeutic efficacy has been limited due to poor vaccine co-delivery and the limited ability of monovalent antigen vaccines to prevent tumor immune evasion. To address these challenges, here, we report GBM radioimmunotherapy that combines radiotherapy, ICB, and multivalent lymph-node-targeting adjuvant/antigen-codelivering albumin-binding vaccines (AAco-AlbiVax). Specifically, to codeliver peptide neoantigens and adjuvant CpG to lymph nodes (LNs), we developed AAco-AlbiVax based on a Y-shaped DNA scaffold that was site-specifically conjugated with CpG, peptide neoantigens, and albumin-binding maleimide-modified Evans blue derivative (MEB). As a result, these vaccines elicited antitumor immunity including neoantigen-specific CD8+ T cell responses in mice. In orthotopic GBM mice, the combination of AAco-AlbiVax, ICB, and fractionated radiation enhanced GBM therapeutic efficacy. However, radioimmunotherapy only trended more efficacious over radiotherapy alone. Taken together, these studies underscore the great potential of radioimmunotherapy for GBM, and future optimization of treatment dosing and scheduling would improve the therapeutic efficacy.


Subject(s)
Glioblastoma , Vaccines , Animals , Mice , Glioblastoma/radiotherapy , Radioimmunotherapy , Neoplasm Recurrence, Local , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Albumins , Lymph Nodes
4.
bioRxiv ; 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37502970

ABSTRACT

Current cancer immunotherapy (e.g., immune checkpoint blockade (ICB)) has only benefited a small subset of patients. Cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) activation holds the potential to improve cancer immunotherapy by eliciting type-I interferon (IFN-I) responses in cancer cells and myeloid cells. Yet, current approaches to this end, mostly by targeting STING, have marginal clinical therapeutic efficacy. Here, we report a cGAS-specific agonistic oligonucleotide, Svg3, as a novel approach to cGAS-STING activation for versatile cancer immunotherapy. Featured with a hairpin structure with consecutive guanosines flanking the stem, Svg3 binds to cGAS and enhances cGAS-Svg3 phase separation to form liquid-like droplets. This results in cGAS activation by Svg3 for robust and dose-dependent IFN-I responses, which outperforms several state-of-the-art STING agonists in murine and human immune cells, and human tumor tissues. Nanocarriers efficiently delivers Svg3 to tissues, cells, and cytosol where cGAS is located. Svg3 reduces tumor immunosuppression and potentiates ICB therapeutic efficacy of multiple syngeneic tumors, in wildtype but neither cGas-/- nor goldenticket Sting-/- mice. Further, as an immunostimulant adjuvant, Svg3 enhances the immunogenicity of peptide antigens to elicit potent T cell responses for robust ICB combination immunotherapy of tumors. Overall, cGAS-agonistic Svg3 is promising for versatile cancer combination immunotherapy.

5.
Adv Sci (Weinh) ; 10(26): e2302575, 2023 09.
Article in English | MEDLINE | ID: mdl-37435620

ABSTRACT

Rheumatoid arthritis (RA) is a systemic autoimmune disease with pathogenic inflammation caused partly by excessive cell-free DNA (cfDNA). Specifically, cfDNA is internalized into immune cells, such as macrophages in lymphoid tissues and joints, and activates pattern recognition receptors, including cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS), resulting in overly strong proinflammation. Here, nanomedicine-in-hydrogel (NiH) is reported that co-delivers cGAS inhibitor RU.521 (RU) and cfDNA-scavenging cationic nanoparticles (cNPs) to draining lymph nodes (LNs) for systemic immunosuppression in RA therapy. Upon subcutaneous injection, NiH prolongs LN retention of RU and cNPs, which pharmacologically inhibit cGAS and scavenged cfDNA, respectively, to inhibit proinflammation. NiH elicits systemic immunosuppression, repolarizes macrophages, increases fractions of immunosuppressive cells, and decreases fractions of CD4+ T cells and T helper 17 cells. Such skewed immune milieu allows NiH to significantly inhibit RA progression in collagen-induced arthritis mice. These studies underscore the great potential of NiH for RA immunotherapy.


Subject(s)
Arthritis, Rheumatoid , Cell-Free Nucleic Acids , Mice , Animals , Nanomedicine , Hydrogels , Arthritis, Rheumatoid/therapy , Immunosuppression Therapy , Nucleotidyltransferases , Immunotherapy , Lymph Nodes , DNA
6.
Sci Adv ; 9(28): eade6257, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37450588

ABSTRACT

Current cancer immunotherapy [e.g., immune checkpoint blockade (ICB)] only benefits small subsets of patients, largely due to immunosuppressive tumor microenvironment (TME). In situ tumor vaccination can reduce TME immunosuppression and thereby improve cancer immunotherapy. Here, we present single-dose injectable (nanovaccines + ICBs)-in-hydrogel (NvIH) for robust immunotherapy of large tumors with abscopal effect. NvIH is thermo-responsive hydrogel co-encapsulated with ICB antibodies and novel polymeric nanoparticles loaded with three immunostimulatory agonists for Toll-like receptors 7/8/9 (TLR7/8/9) and stimulator of interferon genes (STING). Upon in situ tumor vaccination, NvIH undergoes rapid sol-to-gel transformation, prolongs tumor retention, sustains the release of immunotherapeutics, and reduces acute systemic inflammation. In multiple poorly immunogenic tumor models, single-dose NvIH reduces multitier TME immunosuppression, elicits potent TME and systemic innate and adaptive antitumor immunity with memory, and regresses both local (vaccinated) and distant large tumors with abscopal effect, including distant orthotopic glioblastoma. Overall, NvIH holds great potential for tumor immunotherapy.


Subject(s)
Hydrogels , Neoplasms , Humans , Cell Line, Tumor , Immunotherapy , Immunosuppression Therapy , Neoplasms/therapy , Adaptive Immunity , Tumor Microenvironment
7.
Int J Pharm ; 638: 122924, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37037396

ABSTRACT

Glioblastoma multiforme (GBM) is a deadly and difficult to treat primary brain tumor for which satisfactory therapeutics have yet to be discovered. While cancer immunotherapeutics, such as immune checkpoint inhibitors, have successfully improved the treatment of some other types of cancer, the poorly immunogenic GBM tumor cells and the immunosuppressive GBM tumor microenvironment have made it difficult to develop GBM immunotherapeutics. Nucleic acids therapeutics and vaccines, particularly those of mRNA, have become a popular field of research in recent years. This review presents the progress of nucleic acid therapeutics and vaccines for GBM and briefly covers some representative delivery methods of nucleic acids to the central nervous system (CNS) for GBM therapy.


Subject(s)
Brain Neoplasms , Cancer Vaccines , Glioblastoma , Humans , Glioblastoma/pathology , Immunotherapy , Brain Neoplasms/pathology , Cancer Vaccines/therapeutic use , Tumor Microenvironment
8.
Bioact Mater ; 26: 169-180, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36883121

ABSTRACT

Ionizable lipid nanocarriers have made historical contribution to COVID-19 mRNA vaccines. Here, we report ionizable polymeric nanoparticles that co-deliver bi-adjuvant and neoantigen peptides for cancer immunotherapy in combination with immune checkpoint blockade (ICB). Current cancer ICB benefits only a small subset of patients, largely due to a lack of pre-existing target cells and checkpoint targets for ICB, tumor antigenic heterogeneity, and tumor immunosuppression. Therapeutic vaccines hold the potential to enhance ICB therapeutic efficacy by expanding antitumor cell repertoires, upregulating immune checkpoint levels and hence sensitizing ICB, and reducing tumor immunosuppression. Chemically defined peptide vaccines are attractive, but their current therapeutic efficacy has been limited due to 1) poor vaccine delivery to immunomodulatory lymph nodes (LNs) and antigen (Ag)-presenting cells (APCs), 2) poor immunostimulant adjuvant efficacy with restricted target cell subsets in humans, 3) limited adjuvant/Ag codelivery to enhance Ag immunogenicity, and 4) limited ability to overcome tumor antigenic heterogeneity. Here, we developed nanovaccines (NVs) using pH-responsive polymeric micellular nanoparticles (NPs) for the codelivery of bi-adjuvant [Toll-like receptor (TLR) 7/8 agonist R848 and TLR9 agonist CpG] and peptide neoantigens (neoAgs) to draining LNs for efficient Ag presentation in a broad range of APC subsets. These NVs potentiated the immunogenicity of peptide Ags and elicits robust antitumor T cell responses with memory, and remodeled the tumor immune milium with reduced tumor immunosuppression. As a result, NVs significantly enhanced ICB therapeutic efficacy for murine colorectal tumors and orthotopic glioblastoma multiforme (GBM). These results suggest marked potential of bi-adjuvant/neoAg-codelivering NVs for combination cancer immunotherapy.

9.
Front Genet ; 13: 994501, 2022.
Article in English | MEDLINE | ID: mdl-36276935

ABSTRACT

Alloxan (AL)-generated Reactive Oxygen Species (ROS) selectively destroy insulin-producing pancreatic ß-cells. A previous genome-wide scan (GWS) using a cohort of 296 F2 hybrids between NOD (AL-sensitive) and ALR (AL-resistant) mice identified linkages contributing to ß-cell susceptibility or resistance to AL-induced diabetes on Chromosomes (Chr) 2, 3, 8, and a single nucleotide polymorphism in mt-Nd2 of the mitochondrial genome (mtDNA). AL treatment of congenic and consomic NOD mouse stocks confirmed resistance linked to both the mtDNA and the Chr 8 locus from ALR [NOD.mtALR.ALR-(D8Mit293-D8Mit137)]. To identify possible epistatic interactions, the GWS analysis was expanded to 678 F2 mice. ALR-derived diabetes-resistance linkages on Chr 8 as well as the mt-Nd2 a allele were confirmed and novel additional linkages on Chr 4, 5, 6, 7, and 13 were identified. Epistasis was observed between the linkages on Chr 8 and 2 and Chr 8 and 6. Furthermore, the mt-Nd2 genotype affected the epistatic interactions between Chr 8 and 2. These results demonstrate that a combination of nuclear-cytoplasmic genome interactions regulates ß-cell sensitivity to ROS-mediated ALD.

10.
J Control Release ; 348: 84-94, 2022 08.
Article in English | MEDLINE | ID: mdl-35649485

ABSTRACT

Circular RNAs (circRNA) is a class of natural (biogenic) or synthetic closed RNA without 5' or 3' ends. Meanwhile, their unique covalently-closed structures of circRNA prevent RNA degradation by exonucleases, thereby empowering them with high pharmaceutical stability and biostability relative to current standard-of-care linear mRNA. Natural circRNA can be non-coding RNAs as well as protein-coding RNA, the latter of which was recently discovered. The physiological functions of biogenic circRNAs, which largely remain elusive, include protein and gene sponges, cell activity modulators, and protein translation. The discovery that the circRNA levels can be correlated with some human diseases empowers circRNA with the potential as a novel type of disease biomarkers and a noncanonical class of therapeutic targets. Recently, synthetic circRNA have been engineered to explore their applications as a novel class of mRNA therapeutics and vaccines. In this review, we will discuss the current understanding of the biogenesis and physiological functions of natural circRNAs, the approaches to circRNA synthesis, and current research in the exploration of endogenous circRNAs as novel therapeutic targets and testing circRNAs as an emerging class of RNA therapeutics and vaccines.


Subject(s)
RNA, Circular , RNA , Humans , RNA/genetics , RNA, Messenger/genetics , Vaccines, Synthetic , mRNA Vaccines
11.
Adv Sci (Weinh) ; 9(23): e2201895, 2022 08.
Article in English | MEDLINE | ID: mdl-35712773

ABSTRACT

Immune checkpoint blockade (ICB) has significantly advanced cancer immunotherapy, yet its patient response rates are generally low. Vaccines, including immunostimulant-adjuvanted peptide antigens, can improve ICB. The emerging neoantigens generated by cancer somatic mutations elicit cancer-specific immunity for personalized immunotherapy; the novel cyclic dinucleotide (CDN) adjuvants activate stimulator of interferon genes (STING) for antitumor type I interferon (IFN-I) responses. However, CDN/neoantigen vaccine development has been limited by the poor antigen/adjuvant codelivery. Here, pH-responsive CDN/neoantigen codelivering nanovaccines (NVs) for ICB combination tumor immunotherapy are reported. pH-responsive polymers are synthesized to be self-assembled into multivesicular nanoparticles (NPs) at physiological pH and disassembled at acidic conditions. NPs with high CDN/antigen coloading are selected as NVs for CDN/antigen codelivery to antigen presenting cells (APCs) in immunomodulatory lymph nodes (LNs). In the acidic endosome of APCs, pH-responsive NVs facilitate the vaccine release and escape into cytosol, where CDNs activate STING for IFN-I responses and antigens are presented by major histocompatibility complex (MHC) for T-cell priming. In mice, NVs elicit potent antigen-specific CD8+ T-cell responses with immune memory, and reduce multifaceted tumor immunosuppression. In syngeneic murine tumors, NVs show robust ICB combination therapeutic efficacy. Overall, these CDN/neoantigen-codelivering NVs hold the potential for ICB combination tumor immunotherapy.


Subject(s)
Nanoparticles , Neoplasms , Vaccines , Adjuvants, Immunologic , Animals , Immunotherapy , Mice , Neoplasms/therapy , Polymers
12.
Theranostics ; 12(1): 35-47, 2022.
Article in English | MEDLINE | ID: mdl-34987632

ABSTRACT

The past decade has witnessed the blossom of nucleic acid therapeutics and diagnostics (theranostics). Unlike conventional small molecule medicines or protein biologics, nucleic acid theranostics have characteristic features such as the intrinsic ability as "information drugs" to code and execute genetic and theranostic information, ready programmability for nucleic acid engineering, intrinsic stimulatory or regulatory immunomodulation, versatile functionalities, and easy conformational recovery upon thermal or chemical denaturation. Single-stranded circular DNA (circDNA) are a class of single-stranded DNAs (ssDNA) featured with their covalently-closed topology. In addition to the basic advantages of nucleic acids-based materials, such as low cost, biocompatibility, and simplicity of chemical modification, the lack of terminals in circDNA prevents exonuclease degradation, resulting in enhanced biostability relative to the corresponding linear ssDNA. circDNA has been explored for versatile theranostic applications. For instance, circDNA has been extensively studied as templates for bioanalytical signal amplification and the synthesis of nano-/micro-/macro- biomaterials via rolling circle amplification (RCA) and rolling circle transcription (RCT) technologies. circDNA has also been commonly used as the scaffolds for the self-assembly of versatile DNA origami. Finally, circDNA has been implemented as theranostic aptamers, miRNA inhibitors, as well as clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) gene editing donors. In this review article, we will discuss the chemistry, characteristic properties, and the theranostic applications of circDNA (excluding double-stranded circular DNA such as plasmids); we will also envision the challenges and opportunities in this research field.


Subject(s)
DNA, Circular/therapeutic use , Precision Medicine/methods , Gene Editing , Humans
13.
Nanoscale ; 14(2): 263-276, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34918733

ABSTRACT

Mucosal vaccination can elicit both systemic and mucosal immunity, and therefore has the potential to not only treat mucosal immune diseases, prevent the pathogen infection at the mucosal entry sites, but also treat distant or systemic immune disorders. However, only a few mucosal vaccines have been approved for human use in the clinic. Effective mucosal immunization requires the delivery of immunogenic agents to appropriate mucosal surfaces, which remains significantly challenging due to the essential biological barriers presenting at mucosal tissues. In the past decade, remarkable progress has been made in the development of pulmonary mucosal nanovaccines. The nanovaccines leverage advanced nanoparticle-based pulmonary delivery technologies on the characteristics of large surface area and rich antigen presentation cell environment of the lungs for triggering robust immune protection against various mucosal diseases. Herein, we review current methods and formulations of pulmonary delivery, discuss the design strategies of mucosal nanovaccines for potent and long-lasting immune responses, and highlight recent advances in the application of lipid-based pulmonary nanovaccines against mucosal diseases. These advances promise to accelerate the development of novel mucosal nanovaccines for the prophylaxis and therapy of infectious diseases, and cancer, as well as autoimmune disorders at mucosal tissues.


Subject(s)
Vaccines , Humans , Immunity, Mucosal , Lung , Mucous Membrane , Vaccination
15.
Chem Eng J ; 4112021 May 01.
Article in English | MEDLINE | ID: mdl-37304676

ABSTRACT

Cancer has been one of the major healthcare burdens, which demands innovative therapeutic strategies to improve the treatment outcomes. Combination therapy hold great potential to leverage multiple synergistic pathways to improve cancer treatment. Cancer cells often exhibit an increased generation of reactive oxygen species (ROS) and antioxidant species compared with normal cells, and the levels of these species can be further elevated by common therapeutic modalities such as photodynamic therapy (PDT) or chemotherapy. Taking advantage that cancer cells are vulnerable to further oxidative stress, we aim to design a drug delivery system by simultaneously increasing the cellular ROS level, reducing antioxidative capacity, and inducing anticancer chemotherapy in cancer cells. Here, we designed a star-shape polymer, PEG(-b-PCL-Ce6)-b-PBEMA, based on the Passerini three-component reaction, which can both enhance ROS generation during PDT and decrease the GSH level in cancer cells. The polycaprolactone conjugated with photosensitizer Ce6 served as hydrophobic segments to promote micelle formation, and Ce6 was used for PDT. The H2O2-labile group of arylboronic esters pendent on the third segment was designed for H2O2-induced quinone methide (QM) release for GSH depletion. We thoroughly investigated the spectral properties of blank micelle during its assembling process, ROS generation, and H2O2-induced QM release in vitro. Moreover, this polymeric micelle could successfully load hydrophobic anticancer drug Doxorubicin (DOX) and efficiently deliver DOX into cancer cells. The triple combination of ROS generation, GSH elimination, and chemotherapy dramatically improved antitumor efficiency relative to each of them alone in vitro and in vivo.

16.
Sci Adv ; 6(12): eaaw6071, 2020 03.
Article in English | MEDLINE | ID: mdl-32206706

ABSTRACT

Neoantigen vaccines have been enthusiastically pursued for personalized cancer immunotherapy while vast majority of neoantigens have no or low immunogenicity. Here, a bi-adjuvant neoantigen nanovaccine (banNV) that codelivered a peptide neoantigen (Adpgk) with two adjuvants [Toll-like receptor (TLR) 7/8 agonist R848 and TLR9 agonist CpG] was developed for potent cancer immunotherapy. Specifically, banNVs were prepared by a nanotemplated synthesis of concatemer CpG, nanocondensation with cationic polypeptides, and then physical loading with hydrophobic R848 and Adpgk. The immunogenicity of the neoantigen was profoundly potentiated by efficient codelivery of neoantigen and dual synergistic adjuvants, which is accompanied by reduced acute systemic toxicity. BanNVs sensitized immune checkpoint programmed death receptor 1 (PD-1) on T cells, therefore, a combination of banNVs with aPD-1 conspicuously induced the therapy response and led to complete regression of 70% neoantigen-specific tumors without recurrence. We conclude that banNVs are promising to optimize personalized therapeutic neoantigen vaccines for cancer immunotherapy.


Subject(s)
Adjuvants, Immunologic , Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Colorectal Neoplasms/immunology , Immunogenicity, Vaccine , Immunotherapy , Animals , Antigen Presentation/immunology , Antineoplastic Agents, Immunological/pharmacology , Cancer Vaccines/administration & dosage , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Combined Modality Therapy , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Humans , Immunotherapy/methods , Mice , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nanotechnology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Theranostic Nanomedicine , Xenograft Model Antitumor Assays
17.
Biophys Rep ; 6(6): 290-298, 2020 Dec.
Article in English | MEDLINE | ID: mdl-34337142

ABSTRACT

Cancer immunotherapy has made recent breakthrough, including immune checkpoint blockade (ICB) that inhibits immunosuppressive checkpoints such as programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1). However, most cancer patients do not durably respond to ICB. To predict ICB responses for patient stratification, conventional immunostaining has been used to analyze the PD-L1 expression level on biopsied tumor tissues but has limitations of invasiveness and tumor heterogeneity. Recently, PD-L1 levels on tumor cell exosomes showed the potential to predict ICB response. Here, we developed a non-invasive, sensitive, and fast assay, termed as exosome-hybridization chain reaction (ExoHCR), to analyze tumor cell exosomal PD-L1 levels. First, using αCD63-conjugated magnetic beads, we isolated exosomes from B16F10 melanoma and CT26 colorectal cancer cells that were immunostimulated to generate PD-L1-positive exosomes. Exosomes were then incubated with a conjugate of PD-L1 antibody with an HCR trigger DNA (T), in which one αPD-L1-T conjugate carried multiple copies of T. Next, a pair of metastable fluorophore-labeled hairpin DNA (H1 and H2) were added, allowing T on αPD-L1-T to initiate HCR in situ on bead-conjugated exosome surfaces. By flow cytometric analysis of the resulting beads, relative to αPD-L1-fluorophore conjugates, ExoHCR amplified the fluorescence signal intensities for exosome detection by 3-7 times in B16F10 cells and CT26 cells. Moreover, we validated the biostability of ExoHCR in culture medium supplemented with 50% FBS. These results suggest the potential of ExoHCR for non-invasive, sensitive, and fast PD-L1 exosomal profiling in patient stratification of cancer immunotherapy.

18.
Adv Ther (Weinh) ; 3(9)2020 Sep.
Article in English | MEDLINE | ID: mdl-34337143

ABSTRACT

Cyclic dinucleotides (CDNs), such as c-di-GMP (CDG), are agonists for stimulator of interferon genes (STING) and are promising for cancer immunotherapy. Yet, the therapeutic efficacy of CDNs has been limited by poor delivery and biostability. Here, STING-activating DNA nanovaccines (STING-NVs) are developed, which biostabilize, deliver, and conditionally release CDG in the endosome of immune cells, elicit potent antitumor immune responses in murine and human immune cells, ameliorate immunosuppression in vitro and in the tumor microenvironment, and mediate potent cancer immunotherapy in a murine melanoma model. STING-NVs have PLA-b-PEG in the core and cytosine (C)-rich i-motif DNA on the surface. i-Motif DNA undergoes characteristic pH-responsive conformational switch, allowing efficient CDG loading via C:G base pairing at physiological pH, and CDG release in sensitive response to acidic environment such as cell endosome. STING-NVs protect CDG from enzymatic degradation. STING-NVs facilitate cell delivery. Remarkably, STING-NVs promote the endosome escape of CDG by ninefold, and potentiate antitumor immunity. STING-NVs repolarize immunosuppressive M2-like macrophages into antitumor M1-like macrophages in vitro and in the tumor microenvironment of melanoma. In a poorly immunogenic murine melanoma model, intralesional STING-NVs outperform liposomal CDG and fluoride-CDG for melanoma immunotherapy. These results suggest the great potential of STING-NVs for cancer immunotherapy.

19.
Med Drug Discov ; 62020 Jun.
Article in English | MEDLINE | ID: mdl-34337382

ABSTRACT

Cancer immunotherapy has shown great potential as witnessed by an increasing number of immuno-oncology drug approvals in the past few years. Meanwhile, the field of nucleic acid therapeutics has made significant advancement. Nucleic acid therapeutics, such as plasmids, antisense oligonucleotides (ASO), small interfering RNA (siRNA) and microRNA, messenger RNA (mRNA), immunomodulatory DNA/RNA, and gene-editing guide RNA (gRNA) are attractive due to their versatile abilities to alter the expression of target endogenous genes or even synthetic genes, and modulate the immune responses. These abilities can play vital roles in the development of novel immunotherapy strategies. However, limited by the intrinsic physicochemical properties such as negative charges, hydrophilicity, as well as susceptibility to enzymatic degradation, the delivery of nucleic acid therapeutics faces multiple challenges. It is therefore pivotal to develop drug delivery systems that can carry, protect, and specifically deliver and release nucleic acid therapeutics to target tissues and cells. In this review, we attempted to summarize recent advances in nucleic acid therapeutics and the delivery systems for these therapeutics in cancer immunotherapy.

20.
ACS Appl Bio Mater ; 3(5): 2838-2849, 2020 May 18.
Article in English | MEDLINE | ID: mdl-33681722

ABSTRACT

The past decade has witnessed the blossom of two fields: nucleic acid therapeutics and cancer immunotherapy. Unlike traditional small molecule medicines or protein biologics, nucleic acid therapeutics have characteristic features such as storing genetic information, immunomodulation, and easy conformational recovery. Immunotherapy uses the patients' own immune system to treat cancer. A variety of strategies have been developed for cancer immunotherapy including immune checkpoint blockade, adoptive cell transfer therapy, therapeutic vaccines, and oncolytic virotherapy. Interestingly, nucleic acid therapeutics have emerged as a pivotal class of regimen for cancer immunotherapy. Examples of such nucleic acid immunotherapeutics include immunostimulatory DNA/RNA, mRNA/plasmids that can be translated into immunotherapeutic proteins/peptides, and genome-editing nucleic acids. Like many other therapeutic nucleic acids, nucleic acid immunotherapeutics often require chemical modifications to protect them from enzymatic degradation and need drug delivery systems for optimal delivery to target tissues and cells and subcellular locations. In this review, we attempted to summarize recent advancement in the interfacial field of nucleic acid immunotherapeutics for cancer treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...