Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
1.
Technol Cancer Res Treat ; 23: 15330338241263434, 2024.
Article in English | MEDLINE | ID: mdl-39205467

ABSTRACT

BACKGROUND: Breast cancer is a prevalent public health concern affecting numerous women globally and is associated with palmitoylation, a post-translational protein modification. Despite increasing focus on palmitoylation, its specific implications for breast cancer prognosis remain unclear. The work aimed to identify prognostic factors linked to palmitoylation in breast cancer and assess its effectiveness in predicting responses to chemotherapy and immunotherapy. METHODS: We utilized the "limma" package to analyze the differential expression of palmitoylation-related genes between breast cancer and normal tissues. Hub genes were identified using the "WGCNA" package. Using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, we identified a prognostic feature associated with palmitoylation and developed a prognostic nomogram with the "regplot" package. The predictive values of the model for chemotherapy and immunotherapy responses were assessed using immunophenoscore (IPS) and the "pRophetic" package. RESULTS: We identified 211 differentially expressed genes related to palmitoylation, among which 44 demonstrated prognostic potential. Subsequently, a predictive model comprising eleven palmitoylation-related genes was developed. Patients were classified into high-risk and low-risk groups based on the median risk score. The findings revealed that individuals in the high-risk group exhibited lower survival rates, while those in the low-risk group showed increased immune cell infiltration and improved responses to chemotherapy and immunotherapy. Moreover, the BC-Palmitoylation Tool website was established. CONCLUSION: This study developed the first machine learning-based predictive model for palmitoylation-related genes and created a corresponding website, providing clinicians with a valuable tool to improve patient outcomes.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Gene Expression Regulation, Neoplastic , Lipoylation , Machine Learning , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Prognosis , Biomarkers, Tumor/genetics , Gene Expression Profiling , Nomograms , Computational Biology/methods , Treatment Outcome , Transcriptome , Gene Regulatory Networks , Immunotherapy/methods
2.
Int J Pharm ; 664: 124584, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142465

ABSTRACT

Arbutin, a typical optical isomer, has garnered widespread acclaim in the whitening cosmetics for its favorable efficacy and safety. However, the molecular mechanisms underlying α-arbutin and ß-arbutin permeating across the skin have not elucidated clearly yet. Herein we aimed to unveil how α-arbutin and ß-arbutin interacted with keratin or SC lipids, further demonstrating their relationship with their drug permeability. We found that α-arbutin displayed significantly higher drug accumulation into the porcine skin than ß-arbutin within 24 h through in vitro permeation test. Moreover, α-arbutin predominantly induced the alternations of secondary structure of amide II during the drug permeation, which was favorable for α-arbutin permeation. On the contrary, ß-arbutin exhibited an observable effect on the stretching vibration of SC lipids, possessing a significantly stronger mixing energy, binding energy and compatibility with ceramide (Cer) than that of α-arbutin, which ultimately restricted its permeation. Interestingly, free fatty acids and ceramides of the SC lipids specifically utilized its oxygen atom of carboxyl group to dock the arbutin molecules, enhancing their affinity with ß-arbutin, as confirmed by molecular simulation and 13Carbon Nuclear Magnetic Resonance. Nevertheless, a favorable compatibility between α-arbutin and keratin was observed. It was emphasized that the distinct spatial configuration and opposite optical rotation of arbutin was the leading factor impacting the intermolecular force between arbutin and the SC, and resulted in a diverse drug permeation. In cellular and in vivo skin pharmacokinetic studies, α-arbutin also possessed a higher cellular uptake and topical bioavailability than ß-arbutin. This study revealed the transdermal permeation mechanisms of optical isomer arbutin at the molecular levels, providing methodological reference for the investigations of permeation behaviors of other isomers with similar spatial configuration.

3.
J Bone Joint Surg Am ; 106(13): 1189-1196, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958660

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) and spinal degenerative disorders (SDD) are common diseases that frequently coexist. However, both traditional observational studies and recent Mendelian randomization (MR) studies have demonstrated conflicting evidence on the association between T2DM and SDD. This comparative study explored and compared the association between T2DM and SDD using observational and MR analyses. METHODS: For observational analyses, cross-sectional studies (44,972 participants with T2DM and 403,095 participants without T2DM), case-control studies (38,234 participants with SDD and 409,833 participants without SDD), and prospective studies (35,550 participants with T2DM and 392,046 participants without T2DM with follow-up information until 2022) were performed to test the relationship between T2DM and SDD using individual-level data from the U.K. Biobank from 2006 to 2022. For MR analyses, the associations between single-nucleotide polymorphisms with SDD susceptibility obtained using participant data from the U.K. Biobank, which had 407,938 participants from 2006 to 2022, and the FinnGen Consortium, which had 227,388 participants from 2017 to 2022, and genetic predisposition to T2DM obtained using summary statistics from a pooled genome-wide association study involving 1,407,282 individuals were examined. The onset and severity of T2DM are not available in the databases being used. RESULTS: Participants with T2DM were more likely to have SDD than their counterparts. Logistic regression analysis identified T2DM as an independent risk factor for SDD, which was confirmed by the Cox proportional hazard model results. However, using single-nucleotide polymorphisms as instruments, the MR analyses demonstrated no causal relationship between T2DM and SDD. The lack of such an association was robust in the sensitivity analysis, and no pleiotropy was seen. CONCLUSIONS: Our results suggest that the association between T2DM and SDD may be method-dependent. Researchers and clinicians should be cautious in interpreting the association, especially the causal association, between T2DM and SDD. Our findings provide fresh insights into the association between T2DM and SDD by various analysis methods and guide future research and clinical efforts in the effective prevention and management of T2DM and SDD. LEVEL OF EVIDENCE: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.


Subject(s)
Diabetes Mellitus, Type 2 , Mendelian Randomization Analysis , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Polymorphism, Single Nucleotide , Female , Male , Case-Control Studies , Middle Aged , Genetic Predisposition to Disease , Cross-Sectional Studies , Prospective Studies , Observational Studies as Topic , Aged , Genome-Wide Association Study
4.
Free Radic Biol Med ; 222: 361-370, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38945456

ABSTRACT

BACKGROUND: To date, Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver disease associated with clinical complications. Dietary fatty acids have been suggested to be involved in preventing or reversing the accumulation of hepatic fat. However, contradicting roles of monounsaturated fatty acids to the liver have been implicated in various human and murine models, mainly due to the insolubility nature of fatty acids. METHODS: High pressure homogenization methods were used to fabricate oleic acid embedded lipid nanoparticles (OALNs). The in vitro and in vivo models were used to validate the physiological effect of this OALNs via various cellular and molecular approaches including cell viability essay, fluorescent staining, electron microscope, RNAseq, qPCR, Western blots, and IHC staining. RESULTS: We successfully fabricated OALNs with enhanced stability and solubility. More importantly, lipid accumulation was successfully induced in hepatocytes via the application of OALNs in a dose-dependent manner. Overload of OALNs resulted in ROS accumulation and apoptosis of hepatocytes dose-dependently. With the help of transcriptome sequencing and traditional experimental approaches, we demonstrated that the lipotoxic effect induced by OALNs was exerted via the DDIT3/BCL2/BAX/Caspases signaling. Moreover, we also verified that OALNs induced steatosis and subsequent apoptosis in the liver of mice via the activation of DDIT3 in vivo. CONCLUSIONS: In all, our results established a potential pathogenic model of NAFLD for further studies and indicated the possible involvement of DDIT3 signaling in abnormal steatosis process of the liver.


Subject(s)
Apoptosis , Hepatocytes , Nanoparticles , Non-alcoholic Fatty Liver Disease , Oleic Acid , Reactive Oxygen Species , Signal Transduction , Transcription Factor CHOP , Animals , Hepatocytes/metabolism , Hepatocytes/pathology , Hepatocytes/drug effects , Nanoparticles/chemistry , Mice , Humans , Oleic Acid/chemistry , Reactive Oxygen Species/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced , Apoptosis/drug effects , Signal Transduction/drug effects , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Male , Hep G2 Cells , Liposomes
5.
Sci Total Environ ; 946: 174073, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38909802

ABSTRACT

Superhydrophobic porous organic polymers are potential sorbents for volatile organic compounds (VOCs) pollution control by suppressing the competition of water molecules on their surfaces. However, the synthesis of superhydrophobic reagents usually requires large amounts of organic solvents and a long reaction time (≥ 24 h). Herein, a green mechanochemical method was developed to synthesize a superhydrophobic polymer (MSHMP-1) with the advantages of using a small amount of organic solvents (5 mL/g) and a short reaction time (2 h). Meanwhile, MSHMP-1 with a water contact angle (WCA) of 162° exhibited a dramatically rich pore structure as revealed by its specific surface area (SSA) of 1780 m2/g. The decrease in the adsorption of benzene on MSHMP-1 due to the competition of water molecules, even at relative humidity of 90 %, was nonsignificant (<10 %), indicating the great application potential of MSHMP-1 in hydrophobic adsorption. Moreover, the adsorption capacity of MSHMP-1 was maintained after at least five adsorption-desorption cycles. Therefore, MSHMP-1 can be a remarkable adsorbent for the removal of hazardous VOCs, especially at high humidity levels.

6.
Food Chem ; 454: 139788, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38810459

ABSTRACT

Licochalcone A (LCA) is extracted from licorice plants and used as a food additive. Citric acid (CA) and alanine (Ala) are food additives with good regulatory functions. This study aims to investigate the formation and in vitro release mechanism of the LCA eutectogel using supramolecular self-assembly technology. The mechanism of self-assembly indicates that the resulting eutectogel has strong intermolecular interactions. The formation mechanism of LCA eutectogel suggests that LCA is dispersed in nano form in the DES solution before self-assembly and dispersed in molecular form in the eutectogel after self-assembly. Mesoscopic MD simulation studies indicate that the interaction energy between LCA Ala-CA(5:5) eutectogel and the solvent interface is relatively low, suggesting it may have a better drug release rate, consistent with the in vitro release results. In conclusion, the study successfully prepares LCA eutectogel and provides theoretical guidance for the development and application of novel eutectogel for food application.


Subject(s)
Chalcones , Glycyrrhiza , Chalcones/chemistry , Glycyrrhiza/chemistry , Food Additives/chemistry , Gels/chemistry , Plant Extracts/chemistry , Drug Liberation , Molecular Dynamics Simulation
7.
Small ; 20(34): e2401152, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38593320

ABSTRACT

Bacterial infections and inflammation progression yield huge trouble for the management of serious skin wounds and burns. However, some hydrogel dressing exhibit poor wound-healing capabilities. Additionally, little information is given on the molecular theory of hydrogel gelation mechanisms and drug release performance from drug-polymer network in the water environment. Herein, cationic guar gum (CG) is first mixed with dipotassium glycyrrhizinate (DG), and then crosslinked Cu2+ to strengthen the mechanical strength followed by encapsulating mussel adhesive protein (MAP) as composite dressings. Intriguingly, CG-Cu2+ 0.5-DG10 possessed proper rheological properties and mechanical strength predominantly driven by strong CG-H2O-Cu2+ and Cu2+-CG hydrogen bonding interaction. Weak DG-CG hydrogen bonding only controlled DG release in the initial 4 h, while strong hydrogen bonding is the main force regulating the sustained release of Cu2+ within 48 h. The incorporation of MAP further loosened the tight crosslinking of CG-Cu2+ 0.5-DG10. The screened CG-Cu2+ 0.5-DG10/MAP possessed excellent self-healing, injectability, antibacterial, anti-inflammatory, cell proliferation-promotion activities with high biocompatibility. Therefore, CG-Cu2+ 0.5-DG10/MAP hydrogel expedited wound closure on S. aureus-infected full-thickness skin wound model and lowered necrosis progression to the unburned interspaces on a rat burn model. The results highlight the promising translational potential of Cu2+-inspired hydrogels for the management of burns and infected wounds.


Subject(s)
Copper , Hydrogels , Hydrogen Bonding , Wound Healing , Hydrogels/chemistry , Copper/chemistry , Animals , Wound Healing/drug effects , Drug Liberation , Galactans/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ions , Plant Gums/chemistry , Mannans/chemistry , Rats , Delayed-Action Preparations/chemistry , Glycyrrhizic Acid/chemistry , Glycyrrhizic Acid/pharmacology
8.
Inflamm Res ; 73(6): 1047-1068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622285

ABSTRACT

BACKGROUND: Tumor immunotherapy brings new light and vitality to breast cancer patients, but low response rate and limitations of therapeutic targets become major obstacles to its clinical application. Recent studies have shown that CD24 is involved in an important process of tumor immune regulation in breast cancer and is a promising target for immunotherapy. METHODS: In this study, singleR was used to annotate each cell subpopulation after t-distributed stochastic neighbor embedding (t-SNE) methods. Pseudo-time trace analysis and cell communication were analyzed by Monocle2 package and CellChat, respectively. A prognostic model based on CD24-related genes was constructed using several machine learning methods. Multiple quantitative immunofluorescence (MQIF) was used to evaluate the spatial relationship between CD24+PANCK+cells and exhausted CD8+T cells. RESULTS: Based on the scRNA-seq analysis, 1488 CD24-related differential genes were identified, and a risk model consisting of 15 prognostic characteristic genes was constructed by combining the bulk RNA-seq data. Patients were divided into high- and low-risk groups based on the median risk score. Immune landscape analysis showed that the low-risk group showed higher infiltration of immune-promoting cells and stronger immune reactivity. The results of cell communication demonstrated a strong interaction between CD24+epithelial cells and CD8+T cells. Subsequent MQIF demonstrated a strong interaction between CD24+PANCK+ and exhausted CD8+T cells with FOXP3+ in breast cancer. Additionally, CD24+PANCK+ and CD8+FOXP3+T cells were positively associated with lower survival rates. CONCLUSION: This study highlights the importance of CD24+breast cancer cells in clinical prognosis and immunosuppressive microenvironment, which may provide a new direction for improving patient outcomes.


Subject(s)
Breast Neoplasms , CD24 Antigen , Tumor Microenvironment , Humans , Breast Neoplasms/immunology , Breast Neoplasms/genetics , CD24 Antigen/genetics , CD24 Antigen/immunology , Tumor Microenvironment/immunology , Female , Prognosis , CD8-Positive T-Lymphocytes/immunology , Machine Learning , Multiomics
9.
Ecotoxicol Environ Saf ; 276: 116313, 2024 May.
Article in English | MEDLINE | ID: mdl-38626602

ABSTRACT

Wheat (Triticum aestivum L.) is a major foodstuff for over 40% of the world's population. However, hexavalent chromium [Cr(VI)] in contaminated soil significantly affects wheat production and its ecological environment. Streptomyces sp. HU2014 was first used to investigate the effects of Cr (VI) stress on wheat growth. We analyzed the Cr(VI) concentration, physicochemical properties of wheat and soil, total Cr content, and microbial community structures during their interactions. HU2014 reduced the toxicity of Cr(VI) and promoted wheat growth by increasing total nitrogen, nitrate nitrogen, total phosphorus, and Olsen-phosphorus in Cr(VI)-contaminated soil. These four soil variables had strong positive effects on two bacterial taxa, Proteobacteria and Bacteroidota, in the HU2014 treatments. In addition, the level of the dominant Proteobacteria positively correlated with the total Cr content in the soil. Among the fungal communities, which had weaker correlations with soil variables compared with bacterial communities, Ascomycota was the most abundant. Our findings suggest that HU2014 can promote the phytoremediation of Cr(VI)-contaminated soil.


Subject(s)
Biodegradation, Environmental , Chromium , Rhizosphere , Soil Microbiology , Soil Pollutants , Streptomyces , Triticum , Chromium/toxicity , Streptomyces/drug effects , Triticum/growth & development , Triticum/microbiology , Triticum/drug effects , Soil Pollutants/toxicity , Soil/chemistry , Proteobacteria/drug effects , Nitrogen/metabolism , Phosphorus
10.
Heliyon ; 10(5): e27507, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463870

ABSTRACT

Background: Malignant pericardial effusion (MPE) is a common complication of advanced breast cancer (BRCA) and plays an important role in BRCA. This study is aims to construct a prognostic model based on MPE-related genes for predicting the prognosis of breast cancer. Methods: The BRCA samples are analyzed based on the expression of MPE-related genes by using an unsupervised cluster analysis method. This study processes the data by least absolute shrinkage and selection operator and multivariate Cox analysis, and uses machine learning algorithms to construct BRCA prognostic model and develop web tool. Results: BRCA patients are classified into three clusters and a BRCA prognostic model is constructed containing 9 MPE-related genes. There are significant differences in signature pathways, immune infiltration, immunotherapy response and drug sensitivity testing between the high and low-risk groups. Of note, a web-based tool (http://wys.helyly.top/cox.html) is developed to predict overall survival as well as drug-therapy response of BRCA patients quickly and conveniently, which can provide a basis for clinicians to formulate individualized treatment plans. Conclusion: The MPE-related prognostic model developed in this study can be used as an effective tool for predicting the prognosis of BRCA and provides new insights for the diagnosis and treatment of BRCA patients.

12.
Heliyon ; 10(6): e27055, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38509967

ABSTRACT

Returning carbon materials from biomass to soil is a potential technology to retard organic contaminants or dissolved organic matter (DOM) in soil by adsorption, as well as to store carbon in soil for carbon sequestration. However, DOM was widely reported to inhibit adsorption of organic contaminants on carbon materials by competition and by enhancing contaminants' solubility. In this study, a KOH activated carbon material (KAC), pyrolyzed from bamboo chips, with high surface area (3108 m2/g), micropores volumes (0.964 cm3/g), mesopores volumes (1.284 cm3/g), was observed that it can adsorb fulvic acid (FA) and organic contaminants (e.g., nitrobenzene, phenols, and anilines) simultaneously with weak competition and high adsorption capacity. With 50 mg TOC/L FA, for example, the average competition suppressing rate (ΔKf/Kf-m) of organic contaminants on KAC was lower than 5%, the adsorption for organic contaminants and FA were higher than 1100 mg/g and 90 mg TOC/g, respectively. The weak competition on KAC could be attributed to the low micropore blockage (<35%) and the weak adsorption sites competition on mesopores of KAC, as well as the minimal solubility enhancement of organic contaminants by FA because most FA is adsorbed on KAC but is not dissolved in the solution. In addition, adsorption of organic contaminants with high hydrogen-bonding donor ability (αm) and adsorption affinity was less suppressed by FA because of the heterogeneous nature of hydrophilic sites on KAC's surface. Therefore, KAC could be a potential carbon material to be produced to implement to soil for carbon storage and simultaneous retarding organic contaminants and DOM.

13.
J Ethnopharmacol ; 325: 117739, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38301986

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is the dry roots and rhizomes of Glycyrrhiza uralensis Fisch., Glycyrrhiza glabra L. and Glycyrrhiza inflata Bat., which was first recorded in Shengnong's herbal classic. Licorice flavonoid (LF) is the main compound isolated from licorice with an indispensable action in treating gastric ulcer (GU). However, the underlying mechanisms need to be further explored. AIM OF THE STUDY: This study aimed to investigate and further elucidate the mechanisms of LF against ethanol-induced GU using an integrated approach. MATERIALS AND METHODS: The anti-GU effects of LF were evaluated in an ethanol-induced gastric injury rat model. Then, the metabolomics approach was applied to explore the specific metabolites and metabolic pathways. Next, the network pharmacology combined with metabolomics strategy was employed to predict the targets and pathways of LF for GU. Finally, these predictions were validated by molecular docking, RT-qPCR, and western blotting. RESULTS: LF had a positive impact on gastric injury and regulated the expression of GU-related factors. Upon serum metabolomics analysis, 25 metabolic biomarkers of LF in GU treatment were identified, which were primarily involved in amino acid metabolism, carbohydrate metabolism, and other related processes. Subsequently, a "components-targets-metabolites" network was constructed, revealing six key targets (HSP90AA1, AKT1, MAPK1, EGFR, ESR1, PIK3CA) that may be associated with GU treatment. More importantly, KEGG analysis highlighted the importance of the PI3K/AKT pathway including key targets, as a critical route through which LF exerted its anti-GU effects. Molecular docking analyses confirmed that the core components of LF exhibited a strong affinity for key targets. Furthermore, RT-qPCR and western blotting results indicated that LF could reverse the expression of these targets, activate the PI3K/AKT pathway, and ultimately reduce apoptosis. CONCLUSION: LF exerted a gastroprotective effect against gastric ulcer induced by ethanol, and the therapeutic mechanism may involve improving metabolism and suppressing apoptosis through the PI3K-AKT pathway.


Subject(s)
Glycyrrhiza , Stomach Ulcer , Animals , Rats , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Molecular Docking Simulation , Apoptosis , Ethanol , Flavonoids/pharmacology , Flavonoids/therapeutic use , Signal Transduction
14.
Prev Med ; 179: 107796, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070711

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide, and recent studies have found that CRC patients are at increased risk for cardiovascular disease (CVD). This study aimed to investigate competing causes of death and prognostic factors among a large cohort of CRC patients and to describe cardiovascular-specific mortality in relation to the US standard population. METHODS: This registry-based cohort study identified patients diagnosed with CRC between 1973 and 2015 from the Surveillance, Epidemiology, and End Results (SEER) database in the US. Cumulative mortality functions, conditional standardized mortality ratios, and cause-specific hazard ratios were calculated. RESULTS: Of the 563,298 eligible CRC patients included in this study, 407,545 died during the follow-up period. CRC was the leading cause of death, accounting for 49.8% of all possible competing causes of death. CVD was the most common non-cancer cause of death, accounting for 17.8% of total mortality. This study found that CRC patients have a significantly increased risk of cardiovascular-specific mortality compared to the US standard population, with the risk increasing with age and extended survival time. CONCLUSION: This study highlights the need to develop multidisciplinary prevention and management strategies for CRC and CVD to improve CRC patients' survival and quality of life.


Subject(s)
Cardiovascular Diseases , Colorectal Neoplasms , Humans , Cohort Studies , Quality of Life , Routinely Collected Health Data , Colorectal Neoplasms/epidemiology , Risk Factors
15.
World J Clin Cases ; 11(33): 8050-8057, 2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38075580

ABSTRACT

BACKGROUND: Fibrous dysplasia is a congenital disorder in which normal bone is replaced by fibro-osseous tissue or irregular trabeculae of woven bone intermixed with mature collagenous tissue. A single or multiple bones are affected. This rare bone disorder has three clinical patterns including monostotic, polyostotic, and that associated with McCune-Albright syndrome. Most studies report primary fibrous dysplasia. However, a few cases of recurrent monostotic fibular fibrous dysplasia have been reported. Here, we report a therapeutic strategy for recurrent fibular fibrous dysplasia. CASE SUMMARY: A 4-year-old boy was admitted for persistent pain in the left lower limb and abnormal gait over the previous 9 mo. He had no history of present or past illness. Preoperative imaging data showed erosion-like changes with bone expansion of the left middle and lower fibular segment. Tumor tissue in the fibular bone marrow cavity was removed by curettage, and rapid intraoperative pathological examination suggested fibular fibrous dysplasia. An allograft was implanted into the fibular medullary cavity. However, he was readmitted with clinical symptoms including persistent pain, abnormal gait, and local swelling at the age of 6 years. He was diagnosed with recurrent fibular fibrous dysplasia based on the second medical examination. He underwent fibular bone tumor radical resection and longus fibular allograft transplantation combined with fibular bone locking plate and screws. Good host bone to allogenic bone graft fusion was observed by the physician on postoperative regular follow-up. CONCLUSION: Radical resection of fibrous dysplasia and longus fibula allograft combined with internal fixation for reconstruction are suitable for the treatment of recurrent monostotic fibular fibrous dysplasia.

16.
NPJ Precis Oncol ; 7(1): 130, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066053

ABSTRACT

This study sought to identify molecular subtypes of breast cancer (BC) and develop a breast cancer stem cells (BCSCs)-related gene risk score for predicting prognosis and assessing the potential for immunotherapy. Unsupervised clustering based on prognostic BCSC genes was used to determine BC molecular subtypes. Core genes of BC subtypes identified by non-negative matrix factorization algorithm (NMF) were screened using weighted gene co-expression network analysis (WGCNA). A risk model based on prognostic BCSC genes was constructed using machine learning as well as LASSO regression and multivariate Cox regression. The tumor microenvironment and immune infiltration were analyzed using ESTIMATE and CIBERSORT, respectively. A CD79A+CD24-PANCK+-BCSC subpopulation was identified and its spatial relationship with microenvironmental immune response state was evaluated by multiplexed quantitative immunofluorescence (QIF) and TissueFAXS Cytometry. We identified two distinct molecular subtypes, with Cluster 1 displaying better prognosis and enhanced immune response. The constructed risk model involving ten BCSC genes could effectively stratify patients into subgroups with different survival, immune cell abundance, and response to immunotherapy. In subsequent QIF validation involving 267 patients, we demonstrated the existence of CD79A+CD24-PANCK+-BCSC in BC tissues and revealed that this BCSC subtype located close to exhausted CD8+FOXP3+ T cells. Furthermore, both the densities of CD79A+CD24-PANCK+-BCSCs and CD8+FOXP3+T cells were positively correlated with poor survival. These findings highlight the importance of BCSCs in prognosis and reshaping the immune microenvironment, which may provide an option to improve outcomes for patients.

17.
BMC Musculoskelet Disord ; 24(1): 931, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041039

ABSTRACT

OBJECTIVE: To investigate the optimal duration of applying a venous foot pump (VFP) in the prevention of venous thromboembolism (VTE) following hip and knee arthroplasty. METHODS: A total of 230 patients undergoing hip and knee arthroplasty between March 2021 and March 2022 in orthopaedic departments of four major teaching hospitals were prospectively enrolled. Patients were randomly divided into five groups based on the duration of the VFP application. Postoperative deep vein thromboses (DVT), including proximal, distal, and intermuscular DVT, were recorded for analysis. Postoperative blood coagulation examinations, such as D-dimer and active partial thromboplastin time (APTT), pain outcome, and degree of comfort were also collected. RESULTS: Two of the 230 patients withdrew due to early discharge from the hospital, and 228 patients were included in the final analysis. The mean age was 60.38 ± 13.33 years. The baseline characteristics were comparable among the five groups. Compared with the other groups, patients treated with 6-hour VFP had the lowest incidence of DVT (8.7%, 4/46), followed by those treated with 1-hour VFP (15.2%, 7/46), 12-hour VFP (15.6%, 7/45), 18-hour VFP(17.8%, 8/45) and 20-hour VFP(21.7%, 10/46), but with no significant difference (P = 0.539). Regarding postoperative blood coagulation examinations, patients treated with 6-hour VFP had the lowest D-dimer (P = 0.658) and the highest APTT (P = 0.262) compared with the other four groups. 6-hour VFP also had the lowest pain score (P = 0.206) and the highest comfort score (P = 0.288) compared with the other four groups. CONCLUSIONS: Six hours may be the optimal duration of applying VFP for the prevention of VTE in patients undergoing hip and knee arthroplasty in terms of VTE incidence, postoperative blood coagulation examinations, pain outcomes, and comfort scores.


Subject(s)
Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Knee , Venous Thromboembolism , Venous Thrombosis , Humans , Middle Aged , Aged , Venous Thromboembolism/diagnosis , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology , Prospective Studies , Arthroplasty, Replacement, Knee/adverse effects , Venous Thrombosis/epidemiology , Venous Thrombosis/etiology , Venous Thrombosis/prevention & control , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Pain/etiology , Arthroplasty, Replacement, Hip/adverse effects , Anticoagulants/therapeutic use
18.
Heliyon ; 9(12): e22421, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076040

ABSTRACT

Melasma is a pigmentation disease with refractory and high recurrence risk. Therefore, finding effective treatment has become the focus of research. This study aimed to reveal the mechanism of Licorice rose beverage (LRB) in treating melasma from the perspective of network pharmacology and in vitro and in vivo experimental techniques. Network pharmacological studies have shown that Isolicoflavonol, quercetin, and kaempferol are the main active components of anti-melasma and tyrosinase is the main target. Molecular docking studies have shown that these compounds have a good affinity for these targets. In vitro tyrosinase inhibition experiments showed that LRB could significantly inhibit tyrosinase activity. In vivo studies showed that LRB could significantly improve skin damage and skin pigmentation, reduce the activities of serum and skin tyrosinase in model mice, increase the activity of SOD in serum, and reduce the content of MDA in mice, showing a good effect of anti-melasma. In conclusion, these findings reveal the molecular mechanism of LRB in treating melasma and provide the scientific basis for this product's development and clinical application.

19.
Biomed Pharmacother ; 169: 115868, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37952360

ABSTRACT

Licorice flavonoid (LF) is the main component of Glycyrrhizae Radix et Rhizoma, a "medicine food homology" herbal medicine, which has anti-digestive ulcer activity, but the mechanism in anti-gastric ulcer (GU) remains to be elucidated. In this study, we manifested that LF increased the viability of human gastric mucosal epithelial (GES-1) cells, attenuated ethanol (EtOH)-induced manifestations, reduced histological injury, suppressed inflammation, and restored gastric mucosal barrier in GU rats. After LF therapy, the EtOH-induced gut dysbiosis was partly modulated, and short-chain fatty acids (SCFAs) like butyric acid, propionic acid, and valeric acid were found in higher concentrations. We discovered that the majority of genera that increased in the GU group had a negative correlation with SCFAs in the intestinal tract. In addition, LF-upregulated SCFAs boosted mucus secretion in the gastric epithelium and the expression of mucoprotein (MUC) 5AC and MUC6, particularly the MUC5AC in the gastric foveola. Moreover, LF triggered the EGFR/ERK signal pathway which promoted gastric mucus cell regeneration. Therefore, the findings indicated that LF could inhibit inflammation, promote mucosal barrier repair and angiogenesis, regulate gut microbiota and SCFA metabolism; more importantly, promote epithelial proliferation via activation of the EGFR/ERK pathway, exerting a protective and regenerative effect on the gastric mucosa.


Subject(s)
Gastrointestinal Microbiome , Glycyrrhiza , Stomach Ulcer , Rats , Humans , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Fatty Acids, Volatile/metabolism , Inflammation/metabolism , Ethanol/adverse effects , Mucus/metabolism , ErbB Receptors/metabolism
20.
Article in English | MEDLINE | ID: mdl-37980702

ABSTRACT

Licorice flavonoids (LFs) are derived from perennial herb licorice and have been attaining a considerable interest in cosmetic and skin ailment treatments. However, some LFs compounds exhibited poor permeation and retention capability, which restricted their application. In this paper, we systematically investigated and compared the enhancement efficacy and mechanisms of different penetration enhancers (surfactants) with distinct lipophilicity or "heat and cool" characteristics on ten LFs compounds. Herein, the aim was to unveil how seven different enhancers modified the stratum corneum (SC) surface and influence the drug-enhancers-skin interaction, and to relate these effects to permeation enhancing effects of ten LFs compounds. The enhancing efficacy was evaluated by enhancement ratio (ER)permeation, ERretention, and ERcom, which was conducted on the porcine skin. It was summarized that heat capsaicin (CaP) and lipophilic Plurol® Oleique CC 497 (POCC) caused the most significance of SC lipid fluidity, SC water loss, and surface structure alterations, thereby resulting in a higher permeation enhancing effects than other enhancers. CaP could completely occupied drug-skin interaction sites in the SC, while POCC only occupied most drug-skin interactions. Moreover, the enhancing efficacy of both POCC and CaP was dependent on the log P values of LFs. For impervious LFs with low drug solubility, enhancing their drug solubility could help them permeate into the SC. For high-permeation LFs, their permeation was inhibited ascribed to the strong drug-enhancer-skin strength in the SC. More importantly, drug-surfactant-skin energy possessed a good negative correlation with the LFs permeation amount for most LFs molecules. Additionally, the activation of transient receptor potential vanilloid 1 (TRPV1) could enhance LFs permeation by CaP. The study provided novel insights for drug permeation enhancement from the viewpoint of molecular pharmaceutics, as well as the scientific utilization of different enhancers in topical or transdermal formulations.

SELECTION OF CITATIONS
SEARCH DETAIL