Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.075
Filter
1.
Front Immunol ; 15: 1388574, 2024.
Article in English | MEDLINE | ID: mdl-38726015

ABSTRACT

Background: Extracellular vesicles (EVs) are small, transparent vesicles that can be found in various biological fluids and are derived from the amplification of cell membranes. Recent studies have increasingly demonstrated that EVs play a crucial regulatory role in tumorigenesis and development, including the progression of metastatic tumors in distant organs. Brain metastases (BMs) are highly prevalent in patients with lung cancer, breast cancer, and melanoma, and patients often experience serious complications and are often associated with a poor prognosis. The immune microenvironment of brain metastases was different from that of the primary tumor. Nevertheless, the existing review on the role and therapeutic potential of EVs in immune microenvironment of BMs is relatively limited. Main body: This review provides a comprehensive analysis of the published research literature, summarizing the vital role of EVs in BMs. Studies have demonstrated that EVs participate in the regulation of the BMs immune microenvironment, exemplified by their ability to modify the permeability of the blood-brain barrier, change immune cell infiltration, and activate associated cells for promoting tumor cell survival and proliferation. Furthermore, EVs have the potential to serve as biomarkers for disease surveillance and prediction of BMs. Conclusion: Overall, EVs play a key role in the regulation of the immune microenvironment of brain metastasis and are expected to make advances in immunotherapy and disease diagnosis. Future studies will help reveal the specific mechanisms of EVs in brain metastases and use them as new therapeutic strategies.


Subject(s)
Brain Neoplasms , Extracellular Vesicles , Tumor Microenvironment , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Brain Neoplasms/secondary , Brain Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , Biomarkers, Tumor/metabolism , Blood-Brain Barrier/metabolism
2.
Eur J Mass Spectrom (Chichester) ; : 14690667241252020, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38706124

ABSTRACT

This paper presents a newly developed high-performance mobile single-photon ionization time-of-flight mass spectrometry (M-SPI-TOFMS) system for on-line analysis and stereoscopic monitoring of complex gas mixtures. The system is designed for stereoscopic imaging to map the distribution of volatile organic compounds (VOCs) and trace their emission sources in urban areas and industrial parks. It mainly consists of a SPI-TOFMS instrument, a customized commercial vehicle, a meteorological five-parameter monitor with GPS, a high-power generator, and an uninterruptible power supply. The SPI technique, using a 118 nm VUV lamp, can ionize compounds with an ionization potential below 10.78 eV. Mass spectra obtained using this technique show the profiles of various VOCs and some inorganic compounds. The VOCs composition information and mobile location data are simultaneously sent to the GIS software. In GIS software, this data is used for real-time stereoscopic imaging of VOC distribution and precise tracking of VOC movement. The system can achieve a spatial data resolution of 0.69 mm at 25 km/h due to the microsecond detection speed of the M-SPI-TOFMS instrument. The laboratory test provides a rapid overview characterization of benzene, toluene, and xylene. The M-SPI-TOFMS has limits of detection and mass resolution of 33.7 pptv and 1060, respectively. Several field applications were carried out using M-SPI-TOFMS at various locations to identify VOC sources near different factories. The M-SPI-TOFMS system has a navigation monitoring speed of 25 km/h with a time resolution of 1 s. The widespread use of this system will provide accurate data to support environmental management departments in formulating VOCs pollution control policies and improving control efficiency.

3.
Front Endocrinol (Lausanne) ; 15: 1413519, 2024.
Article in English | MEDLINE | ID: mdl-38706695

ABSTRACT

[This corrects the article DOI: 10.3389/fendo.2024.1294638.].

4.
Biomed Pharmacother ; 175: 116607, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38692056

ABSTRACT

In the current study, we investigated the effects of acteoside as a phenylpropanoid glycoside on interaction with neurons to assesses locomotor recovery after spinal cord injury (SCI) in rats by focusing on evaluating the factors involved in autophagy, apoptosis, inflammation and oxidative stress processes. 49 Spargue-Dawley rats were prepared and divided into seven healthy and SCI groups receiving different concentrations of acteoside. After 28 days of disease induction and treatment with acteoside, a BBB score test was used to evaluate locomotor activity. Then, by preparing spinal cord cell homogenates, the expression levels of MAP1LC3A, MAP-2, glial fibrillary acidic protein (GFAP), Nrf2, Keap-1, Caspase 3 (Casp3), Bax, Bcl-2, TNF-a, IL-1B, reactive oxygen species (ROS), and malondialdehyde (MDA) were measured. Improvement of locomotor activity in SCI rats receiving acteoside was observed two weeks after the beginning of the experiment and continued until the fourth week. Both MAP1LC3A and MAP-2 were significantly up-regulated in SCI rats treated with acteoside compared to untreated SCI rats, and GFAP levels were significantly decreased in these animals. Pro-apoptotic proteins Bax and Casp3 and anti-apoptotic protein Bcl-2 were down-regulated and up-regulated, respectively, in SCI rats receiving acteoside. In addition, a significant downregulation of iNOS, TNF-α, and IL-1ß and a decrease in contents of both ROS and MDA as well as increases in Nrf2 and Keap-1 were seen in rats receiving acteoside. Furthermore, acteoside strongly interacted with MAP1LC3A, TNF-α, and Casp3 targets with binding affinities of -8.3 kcal/mol, -8.3 kcal/mol, and -8.5 kcal/mol, respectively, determined by molecular docking studies. In general, it can be concluded that acteoside has protective effects in SCI and can be considered as an adjuvant therapy in the treatment of this disease. However, more studies, especially clinical studies, are needed in this field.

5.
Adv Physiol Educ ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695082

ABSTRACT

Embedding clinically relevant learning experience to basic science subjects is desired for the preclinical phase of the undergraduate medical education. The present study aims to modify case-based learning (CBL) with role-playing situational teaching method and assess the student feedback and learning effect. 176 sophomore students majoring in clinical medicine from Harbin Medical University were randomly divided into two groups: the control group (n=90) who received the traditional hybrid teaching, and the experimental group (n=86), who received the role-playing situational teaching. Students in the experimental group were given a one-week pre-class preparation to dramatize a hyperthyroidism scenario through online autonomous learning of thyroid physiology, and performed the patient's consultation process in class, followed by a student presentation about key points of lecture content and a question-driven discussion. A posttest and questionnaire survey were conducted after class. The test scores of the two groups had no statistical differences, whereas the rate of excellence (high scores) of the experimental group was significantly higher than that of the control group. Furthermore, the record of online self-directed learning engagements was significantly improved in the experimental group. In the questionnaire, more than 70% of the students showed positive attitudes towards the role-playing situational teaching method and were willing to participate in other chapters of the physiology course. Such results show that CBL supported by role-playing situational teaching method encourages active learning and improves the application of basic knowledge of physiology, which can be incorporated in the preclinical curriculums to bridge the gap between theory and practice.

6.
Front Plant Sci ; 15: 1392175, 2024.
Article in English | MEDLINE | ID: mdl-38736439

ABSTRACT

Wolfberry (Lycium, of the family Solanaceae) has special nutritional benefits due to its valuable metabolites. Here, 16 wolfberry-specific metabolites were identified by comparing the metabolome of wolfberry with those of six species, including maize, rice, wheat, soybean, tomato and grape. The copy numbers of the riboflavin and phenyllactate degradation genes riboflavin kinase (RFK) and phenyllactate UDP-glycosyltransferase (UGT1) were lower in wolfberry than in other species, while the copy number of the phenyllactate synthesis gene hydroxyphenyl-pyruvate reductase (HPPR) was higher in wolfberry, suggesting that the copy number variation of these genes among species may be the main reason for the specific accumulation of riboflavin and phenyllactate in wolfberry. Moreover, the metabolome-based neighbor-joining tree revealed distinct clustering of monocots and dicots, suggesting that metabolites could reflect the evolutionary relationship among those species. Taken together, we identified 16 specific metabolites in wolfberry and provided new insight into the accumulation mechanism of species-specific metabolites at the genomic level.

7.
Environ Pollut ; : 124137, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740245

ABSTRACT

The developmental toxicity of fenvalerate, a representative pyrethroid insecticide, is well documented. The present study aimed to explore whether prenatal exposure to fenvalerate causes depression-like behavior in adulthood. Pregnant mice were orally administrated with either corn oil or fenvalerate (2 or 20 mg/kg) during pregnancy. Depressive-like behaviors were assessed by tail suspension test (TST), forced swim test (FST) and sucrose preference test (SPT). Immobility times in TST and FST were increased in offspring whose mothers were exposed to fenvalerate throughout pregnancy. By contrast, sugar preference index, as determined by SPT, was decreased in fenvalerate-exposed offspring. Prefrontal PSD95, a postsynaptic membrane marker, was downregulated in fenvalerate-exposed adulthood offspring. Fenvalerate-induced reduction of prefrontal PSD95 began at GD18 fetal period. Accordingly, prefrontal 5-HT, a neurotransmitter for synaptogenesis, was also reduced in fenvalerate-exposed GD18 fetuses. Tryptophan hydroxylase 2 (TPH2), a key enzyme for 5-HT synthesis, was downregulated in the midbrain of fenvalerate-exposed GD18 fetuses. Additional experiment showed that GRP78 and p-eIF2α, two endoplasmic reticulum stress-related proteins, were increased in the midbrain of fenvalerate-exposed fetal mice. The present results suggest that prenatal exposure to fenvalerate causes depressive-like behavior in adulthood, partially by inhibiting brain-derived 5-HT synthesis.

8.
Pest Manag Sci ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738508

ABSTRACT

BACKGROUND: Biological control of insect pests is encountering an unprecedented challenge in agricultural systems due to the ongoing rise in carbon dioxide (CO2) level. The use of entomopathogenic fungi (EPF) in these systems is gaining increased attention, and EPF as crop endophytes hold the potential for combining insect pest control and yield enhancement of crops, but the effects of increased CO2 concentration on this interaction are poorly understood. Here, the introduction of endophytic EPF was explored as an alternative sustainable management strategy benefiting crops under elevated CO2, using maize (Zea mays), Asian corn borer (Ostrinia furnacalis), and EPF (Beauveria bassiana) to test changes in damage to maize plants from O. furnacalis, and the nutritional status (content of carbon, nitrogen, phosphorus, potassium), biomass, and yield of maize. RESULTS: The results showed that endophytic B. bassiana could alleviate the damage caused by O. furnacalis larvae for maize plants under ambient CO2 concentration, and this effect was enhanced under higher CO2 concentration. Inoculation with B. bassiana effectively counteracted the adverse impact of elevated CO2 on maize plants by preserving the nitrogen content at its baseline level (comparable with ambient CO2 conditions without B. bassiana). Both simultaneous effects could explain the improvement of biomass and yield of maize under B. bassiana inoculation and elevated CO2. CONCLUSION: This finding provides key information about the multifaceted benefits of B. bassiana as a maize endophyte. Our results highlight the promising potential of incorporating EPF as endophytes into integrated pest management strategies, particularly under elevated CO2 concentrations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

9.
Dalton Trans ; 53(18): 7953-7957, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38646810

ABSTRACT

Novel tricyclic 1,4-dihydro-1,4-phosphagermines (3a and 4a) were synthesised from Ge(NR2)2-bridged 1,3-imidazole-2-thione derivative 2a; all structures were crystallographically confirmed. In going from rather small alkyl substituents (Me, nBu) at the nitrogen centers of the 1,3-imidazole-2-thione units to sterically more demanding R = Mes and changing the employed Ge reagent from (R2N)2GeCl2 to R2NGeCl3 we achieved access to mixed functional bis(1,3-imidazole-2-thione)-substituted germanium derivative 2c. The latter was treated with MeLi and, subsequently, with PCl3 to yield a pentacyclic P,Ge-heterocycle (5); its formation was rationalized using DFT theoretical calculations.

10.
Food Funct ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635214

ABSTRACT

Human milk represents the gold standard for infant nutrition, with approximately 50% of the energy in human milk derived from lipids. Odd-chain fatty acids (OCFAs) have been recognized as a category of bioactive milk fatty acids in recent research; however, limited data exist on OCFAs in human milk. This study collected human milk samples spanning the postpartum period from 0 to 400 days. Phospholipids containing OCFAs (PL-OCFAs) were determined in 486 human milk samples using hydrophilic liquid chromatography-electrospray ionization-triquadrupole-mass spectrometry. Triacylglycerols containing OCFAs (TAG-OCFAs) were analyzed in 296 human milk samples using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The average total concentration of PL-OCFA ranged from 30.89 ± 14.27 mg L-1 to 93.48 ± 36.55 mg L-1 during lactation, and the average total TAG-OCFA content ranged from 103.1 ± 147.15 mg L-1 to 965.41 ± 651.67 mg L-1. Despite the lower absolute concentration of PL-OCFA, its relative concentration (8.75%-11.75%) was significantly higher than that of TAG-OCFA (0.37%-1.85%) throughout lactation. PC-OCFA, SM-OCFA and PE-OCFA are major sub-classes of PL-OCFA. Furthermore, C17:0 was the major chain length in both PL-OCFA and TAG-OCFA, followed by C15:0. C17:1 was characteristic of TAG-OCFA, while long-chain fatty acids C19:0, C21:0 and C23:0 were characteristic of PL-OCFA. Our findings highlighted the importance of bioactive lipids in human milk, suggesting that OCFAs could be targeted in future studies in relation to the health and development of infants.

11.
Int J Food Microbiol ; 417: 110697, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38642433

ABSTRACT

Foodborne illness caused by Salmonella spp. is one of the most prevalent public health problems globally, which have brought immeasurable economic burden and social impact to countries around the world. Neither current nucleic acid amplification detection method nor standard culture method (2-3 days) are suitable for field detection in areas with a heavy burden of Salmonella spp. Here, we developed a highly sensitive and accurate assay for Salmonella spp. detection in less than 40 min. Specifically, the invA gene of Salmonella spp. was amplified by recombinase polymerase amplification (RPA), followed by Pyrococcus furiosus Argonaute (PfAgo)-based target sequence cleavage, which could be observed by a fluorescence reader or the naked eye. The assay offered the lowest detectable concentration of 1.05 × 101 colony forming units/mL (CFU/mL). This assay had strong specificity and high sensitivity for the detection of Salmonella spp. in field samples, which indicated the feasibility of this assay.


Subject(s)
Food Microbiology , Nucleic Acid Amplification Techniques , Pyrococcus furiosus , Salmonella , Pyrococcus furiosus/genetics , Salmonella/genetics , Salmonella/isolation & purification , Nucleic Acid Amplification Techniques/methods , Food Safety , Recombinases/metabolism , Recombinases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Sensitivity and Specificity , Food Contamination/analysis
12.
Org Biomol Chem ; 22(18): 3584-3588, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38623862

ABSTRACT

Asp-based lactam cyclic peptides are considered promising drug candidates. However, using Fmoc solid-phase peptide synthesis (Fmoc-SPPS) for these peptides also causes aspartimide formation, resulting in low yields or even failure to obtain the target peptides. Here, we developed a diaminodiacid containing an amide bond as a ß-carboxyl-protecting group for Asp to avoid aspartimide formation. The practicality of this diaminodiacid has been illustrated by the synthesis of lactam cyclic peptide cyclo[Lys9,Asp13] KIIIA7-14 and 1Y.


Subject(s)
Amides , Aspartic Acid , Lactams , Peptides, Cyclic , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Lactams/chemistry , Lactams/chemical synthesis , Amides/chemistry , Amides/chemical synthesis , Aspartic Acid/chemistry , Aspartic Acid/chemical synthesis , Aspartic Acid/analogs & derivatives , Solid-Phase Synthesis Techniques , Molecular Structure
13.
DNA Res ; 31(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38590243

ABSTRACT

Calophaca sinica is a rare plant endemic to northern China which belongs to the Fabaceae family and possesses rich nutritional value. To support the preservation of the genetic resources of this plant, we have successfully generated a high-quality genome of C. sinica (1.06 Gb). Notably, transposable elements (TEs) constituted ~73% of the genome, with long terminal repeat retrotransposons (LTR-RTs) dominating this group of elements (~54% of the genome). The average intron length of the C. sinica genome was noticeably longer than what has been observed for closely related species. The expansion of LTR-RTs and elongated introns emerged had the largest influence on the enlarged genome size of C. sinica in comparison to other Fabaceae species. The proliferation of TEs could be explained by certain modes of gene duplication, namely, whole genome duplication (WGD) and dispersed duplication (DSD). Gene family expansion, which was found to enhance genes associated with metabolism, genetic maintenance, and environmental stress resistance, was a result of transposed duplicated genes (TRD) and WGD. The presented genomic analysis sheds light on the genetic architecture of C. sinica, as well as provides a starting point for future evolutionary biology, ecology, and functional genomics studies centred around C. sinica and closely related species.


Subject(s)
Genome, Plant , Retroelements , Fabaceae/genetics , Chromosomes, Plant , Gene Duplication , Genome Size , DNA Transposable Elements , Evolution, Molecular , Terminal Repeat Sequences , Genomics , Introns , Phylogeny
14.
Sci Rep ; 14(1): 9139, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644375

ABSTRACT

This paper aims to investigate the dynamic response characteristics of subway station under earthquakes. To this end, seismic waves are transformed into equivalent nodal loads on viscoelastic artificial boundaries using theories and methods of wave motion. The calculation formulas for equivalent nodal loads of SV waves incident at any angle are established, and ANSYS' APDL program compiles to automatically generate the viscoelastic artificial boundary and input the seismic loads. A finite element model of soil-subway station interaction was established, and the seismic response characteristics of a two-story three-span subway station under different incidence angles of SV waves were investigated using the above seismic input method. The results indicate that the incidence angle of seismic waves has a significant impact on the seismic response of subway station. Inclined incidence of seismic waves causes non-uniform loading and deformation of the subway station. Specifically, a small angle leads to predominantly transverse shear deformation, while a large angle causes mainly vertical shear deformation. The inclined incidence of seismic waves significantly increases the vertical acceleration of the subway station, with the effect becoming more pronounced as the angle increases. Additionally, special attention should be given to the joints between the structural slab and the side wall, slab and center column, as well as the two ends of the center column as they are vulnerable areas during earthquakes and require careful consideration in seismic design.

15.
Sci Total Environ ; 927: 172296, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38588732

ABSTRACT

Constructed wetlands (CWs) are pivotal for wastewater treatment due to their high efficiency and numerous advantages. The impact of plant species and diversity on greenhouse gas (GHG) emissions from CWs requires a more comprehensive evaluation. Moreover, controversial perspectives persist about whether CWs function as carbon sinks or sources. In this study, horizontal subsurface flow (HSSF) CWs vegetated with Cyperus alternifolius, Typhae latifolia, Acorus calamus, and the mixture of these three species were constructed to evaluate pollutant removal efficiencies and GHG emissions, and estimate carbon budgets. Polyculture CWs can stably remove COD (86.79 %), NH4+-N (97.41 %), NO3--N (98.55 %), and TP (98.48 %). They also mitigated global warming potential (GWP) by suppressing N2O emissions compared with monoculture CWs. The highest abundance of the Pseudogulbenkiania genus, crucial for denitrification, was observed in polyculture CWs, indicating that denitrification dominated in nitrogen removal. While the highest nosZ copy numbers were observed in CWs vegetated with Cyperus alternifolius, suggesting its facilitation of denitrification-related microbes. Selecting Cyperus alternifolius to increase species diversity is proposed for simultaneously maintaining the water purification capacity and reducing GHG emissions. Carbon budget estimations revealed that all four types of HSSF CWs were carbon sinks after six months of operation, with carbon accumulation capacity of 4.90 ± 1.50 (Cyperus alternifolius), 3.31 ± 2.01 (Typhae latifola), 1.78 ± 1.30 (Acorus calamus), and 2.12 ± 0.88 (polyculture) kg C/m2/yr. This study implies that under these operation conditions, CWs function as carbon sinks rather than sources, aligning with carbon peak and neutrality objectives and presenting significant potential for carbon reduction efforts.


Subject(s)
Greenhouse Gases , Waste Disposal, Fluid , Wetlands , Greenhouse Gases/analysis , Waste Disposal, Fluid/methods , Cyperus/metabolism , Carbon/metabolism , Wastewater , Typhaceae/metabolism , Acorus/metabolism
16.
Mycology ; 15(1): 101-109, 2024.
Article in English | MEDLINE | ID: mdl-38558846

ABSTRACT

Histoplasmosis is a systemic mycosis caused by the dimorphic fungus in the genus Histoplasma. Histoplasmosis is overlooked in China. This study aims to provide an epidemiological and clinical update on histoplasmosis in China by literature review. We reviewed cases of histoplasmosis reported in recent 11 years and described a case of histoplasmosis-triggered hemophagocytic lymphohistiocytosis (HLH) in an immunocompetent patient. A total of 225 cases of histoplasmosis diagnosed in China between 2012 and 2022 were involved in this study, compared with 300 cases reviewed from 1990 to 2011, an increasing number of cases of histoplasmosis have been diagnosed in the last 11 years. The majority of cases of histoplasmosis were autochthonous cases, mainly from provinces Sichuan (56/225, 24.9%), Hunan (50/225, 22.2%), Guangdong (31/225, 13.8%), and Yunnan (24/225, 10.7%). Higher incidence (52.5%, 53/99) of histoplasmosis occurred in immunocompetent patients which is similar to those from the previous 21 years, and the prevalence of the disease did not vary highly over time. Of note, the number of histoplasmosis cases is increasing, and the geographic distribution is shifting southwards over time. Improved awareness is critically important for informing clinical practice in China.

17.
Future Oncol ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591950

ABSTRACT

Background: This study assesses immune checkpoint inhibitors' efficacy for non-small-cell lung cancer (NSCLC) with brain metastases (BM) and explores the role of cranial radiation therapy (CRT) in the immunotherapy era. Methods: The retrospective analysis screened NSCLC patients with BMs from July 2018 to December 2021. Treatment involved chemotherapy combined with immune checkpoint inhibitors as the first-line, with patients divided into CRT and non-CRT groups. Overall survival (OS), progression-free survival and intracranial progression-free survival were calculated and compared. Results: Among 113 patients, 74 who received CRT had significantly better median OS (not reached vs 15.31 months), particularly among those with one to three BMs. Factors correlating with better OS included CRT, PD-L1 expression and diagnosis-specific graded prognostic assessment scores. Conclusion: Integrating CRT with anti-PD-1 therapy notably enhanced long-term survival in NSCLC patients with BMs.

18.
Neural Regen Res ; 19(12): 2773-2784, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-38595294

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202412000-00032/figure1/v/2024-04-08T165401Z/r/image-tiff For patients with chronic spinal cord injury, the conventional treatment is rehabilitation and treatment of spinal cord injury complications such as urinary tract infection, pressure sores, osteoporosis, and deep vein thrombosis. Surgery is rarely performed on spinal cord injury in the chronic phase, and few treatments have been proven effective in chronic spinal cord injury patients. Development of effective therapies for chronic spinal cord injury patients is needed. We conducted a randomized controlled clinical trial in patients with chronic complete thoracic spinal cord injury to compare intensive rehabilitation (weight-bearing walking training) alone with surgical intervention plus intensive rehabilitation. This clinical trial was registered at ClinicalTrials.gov (NCT02663310). The goal of surgical intervention was spinal cord detethering, restoration of cerebrospinal fluid flow, and elimination of residual spinal cord compression. We found that surgical intervention plus weight-bearing walking training was associated with a higher incidence of American Spinal Injury Association Impairment Scale improvement, reduced spasticity, and more rapid bowel and bladder functional recovery than weight-bearing walking training alone. Overall, the surgical procedures and intensive rehabilitation were safe. American Spinal Injury Association Impairment Scale improvement was more common in T7-T11 injuries than in T2-T6 injuries. Surgery combined with rehabilitation appears to have a role in treatment of chronic spinal cord injury patients.

19.
PLoS One ; 19(4): e0300579, 2024.
Article in English | MEDLINE | ID: mdl-38578795

ABSTRACT

Energy plays a crucial role in global economic development, but it also contributes significantly to CO2 emissions. China has proposed a "dual-carbon" goal, and a key aspect to achieving this objective is finding effective ways to promote the decarbonization of the energy consumption structure (DECS). Compared with traditional finance, green finance is pivotal in advancing green and low-carbon development. However, the mechanism through which green finance impacts DECS has not been thoroughly explored. This study employs an enhanced weighted multi-dimensional vector angle method, which is more systematic and scientific, to measure DECS. Then, dynamic panel data from 30 provinces in China spanning the years 2003 to 2020 are used. A double fixed-effects model is applied to investigate the impact of green finance on the DECS and identify potential pathways. Results reveal that green finance significantly enhances DECS, primarily by reinforcing green development. The critical impact pathway involves the promotion of green technology innovation and green industry development. Moreover, the enhancing effect of green finance on the DECS is considerably significant in regions with relatively low government spending on science and technology (S&T), and where the focus is not on the "Atmospheric Ten" policy. The measurement of DECS is innovative, and the conclusions derived from it can offer compelling evidence for various social stakeholders. The government has the opportunity to establish a green financial system, supporting green technological innovation and the development of green industries. This approach can accelerate the DECS and work toward achieving the "double carbon" goal at an earlier date.


Subject(s)
Carbon , Sustainable Development , China , Critical Pathways , Economic Development
20.
Front Endocrinol (Lausanne) ; 15: 1294638, 2024.
Article in English | MEDLINE | ID: mdl-38590820

ABSTRACT

As the incidence of type 2 diabetes mellitus (T2DM) is increasing rapidly and its consequences are severe, effective intervention and prevention, including sleep-related interventions, are urgently needed. As a component of sleep architecture, naps, alone or in combination with nocturnal sleep, may influence the onset and progression of T2DM. Overall, napping is associated with an increased risk of T2DM in women, especially in postmenopausal White women. Our study showed that napping >30 minutes (min) increased the risk of T2DM by 8-21%. In addition, non-optimal nighttime sleep increases T2DM risk, and this effect combines with the effect of napping. For nondiabetic patients, napping >30 min could increase the risks of high HbA1c levels and impaired fasting glucose (IFG), which would increase the risk of developing T2DM later on. For diabetic patients, prolonged napping may further impair glycemic control and increase the risk of developing diabetic complications (e.g., diabetic nephropathy) in the distant future. The following three mechanisms are suggested as interpretations for the association between napping and T2DM. First, napping >30 min increases the levels of important inflammatory factors, including interleukin 6 and C-reactive protein, elevating the risks of inflammation, associated adiposity and T2DM. Second, the interaction between postmenopausal hormonal changes and napping further increases insulin resistance. Third, prolonged napping may also affect melatonin secretion by interfering with nighttime sleep, leading to circadian rhythm disruption and further increasing the risk of T2DM. This review summarizes the existing evidence on the effect of napping on T2DM and provides detailed information for future T2DM intervention and prevention strategies that address napping.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Female , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/epidemiology , Sleep , Circadian Rhythm , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL
...