Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Mol Med Rep ; 29(5)2024 05.
Article in English | MEDLINE | ID: mdl-38551163

ABSTRACT

Endothelial barrier disruption plays a key role in the pathophysiology of heat stroke (HS). Knockout of DNAJA1 (DNAJA1­KO) is thought to be protective against HS based on a genome­wide CRISPR­Cas9 screen experiment. The present study aimed to illustrate the function of DNAJA1­KO against HS in human umbilical vein endothelial cells. DNAJA1­KO cells were infected using a lentivirus to investigate the role of DNAJA1­KO in HS­induced endothelial barrier disruption. It was shown that DNAJA1­KO could ameliorate decreased cell viability and increased cell injury, according to the results of Cell Counting Kit­8 and lactate dehydrogenase assays. Moreover, HS­induced endothelial cell apoptosis was inhibited by DNAJA1­KO, as indicated by Annexin V­FITC/PI staining and cleaved­caspase­3 expression using flow cytometry and western blotting, respectively. Furthermore, the endothelial barrier function, as measured by transepithelial electrical resistance and FITC­Dextran, was sustained during HS. DNAJA1­KO was not found to have a significant effect on the expression and distribution of cell junction proteins under normal conditions without HS. However, DNAJA1­KO could effectively protect the HS­induced decrease in the expression and distribution of cell junction proteins, including zonula occludens­1, claudin­5, junctional adhesion molecule A and occludin. A total of 4,394 proteins were identified using proteomic analysis, of which 102 differentially expressed proteins (DEPs) were activated in HS­induced wild­type cells and inhibited by DNAJA1­KO. DEPs were investigated by enrichment analysis, which demonstrated significant enrichment in the 'calcium signaling pathway' and associations with vascular­barrier regulation. Furthermore, the 'myosin light­chain kinase (MLCK)­MLC signaling pathway' was proven to be activated by HS and inhibited by DNAJA1­KO, as expected. Moreover, DNAJA1­KO mice and a HS mouse model were established to demonstrate the protective effects on endothelial barrier in vivo. In conclusion, the results of the present study suggested that DNAJA1­KO alleviates HS­induced endothelial barrier disruption by improving thermal tolerance and suppressing the MLCK­MLC signaling pathway.


Subject(s)
HSP40 Heat-Shock Proteins , Heat Stroke , Animals , Humans , Mice , Heat Stroke/genetics , Heat Stroke/metabolism , HSP40 Heat-Shock Proteins/genetics , Human Umbilical Vein Endothelial Cells , Mice, Knockout , Proteomics , Signal Transduction
2.
J Nat Prod ; 87(4): 705-712, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38547118

ABSTRACT

Penicilloneines A (1) and B (2) are the first reported quinolone-citrinin hybrids. They were isolated from the starfish-derived fungus Penicillium sp. GGF16-1-2, and their structures were elucidated using spectroscopic, chemical, computational, and single-crystal X-ray diffraction methods. Penicilloneines A (1) and B (2) share a common 4-hydroxy-1-methyl-2(1H)-quinolone unit; however, they differ in terms of citrinin moieties, and these two units are linked via a methylene bridge. Penicilloneines A (1) and B (2) exhibited antifungal activities against Colletotrichum gloeosporioides, with lethal concentration 50 values of 0.02 and 1.51 µg/mL, respectively. A mechanistic study revealed that 1 could inhibit cell growth and promote cell vacuolization and consequent disruption of the fungal cell walls via upregulating nutrient-related hydrolase genes, including putative hydrolase, acetylcholinesterase, glycosyl hydrolase, leucine aminopeptidase, lipase, and beta-galactosidase, and downregulating their synthase genes 3-carboxymuconate cyclase, pyruvate decarboxylase, phosphoketolase, and oxalate decarboxylase.


Subject(s)
Antifungal Agents , Citrinin , Colletotrichum , Penicillium , Quinolones , Penicillium/chemistry , Colletotrichum/drug effects , Quinolones/pharmacology , Quinolones/chemistry , Quinolones/isolation & purification , Molecular Structure , Animals , Citrinin/pharmacology , Citrinin/chemistry , Citrinin/isolation & purification , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Microbial Sensitivity Tests
3.
Adv Sci (Weinh) ; 11(9): e2305508, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38145957

ABSTRACT

Hepatocellular carcinoma (HCC) is acknowledged as an immunosuppressive neoplasm, whereby the inactive microenvironment facilitates immune tolerance and evasion of HCC. Post-surgical resected liver cancer exhibits a proclivity for relapse, rendering prevention of recurrence challenging as it may transpire at any point subsequent to surgery. Among the various anti-recurrence interventions, the primary clinical approach involving the administration of regimens atezolizumab and bevacizumab (A+T) is deemed the most efficacious in reversing the tumor microenvironment, albeit still lacking in complete satisfaction. Therefore, the objective is to utilize a recently developed block copolymer as a protective carrier for two specific monoclonal antibody drugs. Subsequently, a modified hemostatic hydrogel will be synthesized for application during hepatic surgery. The immunotherapy impact of this approach is significantly prolonged and intensified due to the combined hemostasis properties and controlled release of the constituents within the synthesized nanocomposite hydrogel. Furthermore, these nanocomposite hydrogels exhibit remarkable efficacy in preventing postoperative wound bleeding and substantially enhancing the safety of liver cancer resection. This research on the anti-recurrence hydrogel system presents a novel therapeutic approach for addressing local recurrence of liver cancer, potentially offering a substantial contribution to the field of surgical treatment for liver cancer in the future.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Humans , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/surgery , Blood Loss, Surgical , Hydrogels/therapeutic use , Neoplasm Recurrence, Local/prevention & control , Neoplasm Recurrence, Local/pathology , Nanoparticles/therapeutic use , Tumor Microenvironment
4.
Curr Med Chem ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37828675

ABSTRACT

Atorvastatin, a lipid-lowering drug that is widely used in the treatment of cardiovascular diseases, has significant clinical significance. This article focuses on the synthetic procedures of atorvastatin, including Paal-Knorr synthesis and several new synthetic strategies. It also outlines chemical and chemo-enzymatic methods for synthesizing optically active side chain of atorvastatin. In addition, a comprehensive overview of the analytical monitoring techniques for atorvastatin and its metabolites and impurities is reported, alongside a discussion of their strengths and limitations.

5.
Oxid Med Cell Longev ; 2022: 5121496, 2022.
Article in English | MEDLINE | ID: mdl-36187337

ABSTRACT

Background: Fecal microbiota transplantation (FMT) has been found to be effective in irritable bowel syndrome with predominant diarrhea (IBS-D). We conducted this study to determine the impact of a low FODMAP diet (LFD) on the gut microbiota and the efficacy of FMT in the treatment of IBS-D. Methods: A retrospective analysis of a single-arm open-label prospective study was conducted to investigate the impact of FMT alone (n = 40) and FMT+LFD (n = 40) in refractory IBS-D. The IBS-quality of life (QOL), IBS-severity scoring system (SSS), gastrointestinal symptom rating scale (GSRS), Hamilton anxiety scale (HAMA), and Hamilton depression scale (HAMD) were used to evaluate the efficacy, and partial 16S rDNA amplicon sequencing was used to profile the microbiota. Results: The response rates were higher in the FMT+LFD group than in the FMT group (1 mo, 3 mo, 6 mo: 70.0% vs. 55.0%, 67.5% vs. 57.5%, 62.5% vs. 27.5%, respectively). The FMT+LFD group showed significantly better improvement in IBS-QOL at 1, 3, and 6 months; IBS-SSS at 6 months; and GSRS at 1 month compared to FMT alone. Changes in HAMA and HAMD were similar in the two groups. The LFD significantly upregulated the FMT-induced microbial diversity (OTUs: 666 vs. 574, Adonis: P = 0.02) and significantly strengthened the upregulation of Bacteroides, Alistipes, and Ruminococcaceae_UCG-002 and the downregulation of Bifidobacterium. Conclusion: An LFD enhanced the efficacy of FMT, increased the gut microbial diversity after FMT, and strengthened the inhibitory effect of FMT on conditional pathogens.


Subject(s)
Gastrointestinal Diseases , Irritable Bowel Syndrome , DNA, Ribosomal , Diarrhea/therapy , Diet , Fecal Microbiota Transplantation , Feces/microbiology , Humans , Irritable Bowel Syndrome/therapy , Prospective Studies , Quality of Life , Retrospective Studies
6.
Pharmaceutics ; 14(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36145508

ABSTRACT

Primary liver cancer is the seventh-most-common cancer worldwide and the fourth-leading cause of cancer mortality. In the current era of precision medicine, the diagnosis and management of liver cancer are full of challenges and prospects. Mesoporous nanoparticles are often designed as specific carriers of drugs and imaging agents because of their special morphology and physical and chemical properties. In recent years, the design of the elemental composition and morphology of mesoporous nanoparticles have greatly improved their drug-loading efficiency, biocompatibility and biodegradability. Especially in the field of primary liver cancer, mesoporous nanoparticles have been modified as highly tumor-specific imaging contrast agents and targeting therapeutic medicine. Various generations of complexes and structures have been determined for the complicated clinical management requirements. In this review, we summarize these advanced mesoporous designs in the different diagnostic and therapeutic fields of liver cancer and discuss the relevant advantages and disadvantages of transforming applications. By comparing the material properties, drug-delivery characteristics and application methods of different kinds of mesoporous materials in liver cancer, we try to help determine the most suitable drug carriers and information media for future clinical trials. We hope to improve the fabrication of biomedical mesoporous nanoparticles and provide direct evidence for specific cancer management.

7.
Ultrason Sonochem ; 89: 106135, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36041375

ABSTRACT

Ultrasound-assisted enzymolysis has been applied to improve conventional enzymolysis, while there are rare reports on the application of ultrasound to high-concentration feather protein enzymolysis. Therefore, the feasibility of dual-frequency slit ultrasound (DFSU) for enzymolysis of high-concentration hydrolyzed feather meal (HFM), as well as the biological activities and structural characteristics of hydrolysates were investigated. The single-factor test was used to optimize the ultrasonic processing parameters: substrate concentration, frequency mode, intermittent ratio, power density, and time. The results showed that protein recovery rate and conversion rate increased by 6.08% and 18.63% under the optimal conditions (200 g/L, 28/80 kHz, 5:2 s/s, 600 W/L, and 3 h) compared with conventional enzymolysis, respectively. The macromolecular proteins in hydrolysates were converted into micromolecular peptides (< 500 Da) when treated by DFSU, and antioxidant activity and angiotensin-I-converting enzyme (ACE) inhibitory activity of hydrolysates were increased. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images illustrated the microstructure changes of feather protein particles in the ultrasound-assisted enzymatic hydrolysates of HFM (UEH), including more porous, smaller, and more uniform. Additionally, the conformation of protein molecules was significantly affected (P < 0.05), including the increase in free sulfhydryl (SH), the decrease in disulfide bond (SS) and surface hydrophobicity (H0). Fourier transform infrared (FTIR) spectra analysis further showed that the secondary structure of feather proteins was modified with a reduction in α-helix, ß-turn, and ß-sheet, while an increase in random coil content was observed. These results indicated that DFSU could be a promising method to enhance high-concentration HFM for preparing peptide-rich hydrolysates with high antioxidant activity and ACE inhibitory activity.


Subject(s)
Antioxidants , Feathers , Angiotensins , Animals , Antioxidants/pharmacology , Disulfides/chemistry , Hydrolysis , Peptides/pharmacology , Proteins
8.
Front Oncol ; 12: 972744, 2022.
Article in English | MEDLINE | ID: mdl-35982956

ABSTRACT

Background: Liver cancer is among the leading causes of death related to cancer around the world. The most frequent type of human liver cancer is hepatocellular carcinoma (HCC). Fatty acid (FA) metabolism is an emerging hallmark that plays a promoting role in numerous malignancies. This study aimed to discover a FA metabolism-related risk signature and formulate a better model for HCC patients' prognosis prediction. Methods: We collected mRNA expression data and clinical parameters of patients with HCC using the TCGA databases, and the differential FA metabolism-related genes were explored. To create a risk prognostic model, we carried out the consensus clustering as well as univariate and multivariate Cox regression analyses. 16 genes were used to establish a prognostic model, which was then validated in the ICGC dataset. The accuracy of the model was performed using receiver operating characteristic (ROC) analyses, decision curve analysis (DCA) and nomogram. The immune cell infiltration level of risk genes was evaluated with single-sample GSEA (ssGSEA) algorithm. To reflect the response to immunotherapy, immunophenoscore (IPS) was obtained from TCGA-LIHC. Then, the expression of the candidate risk genes (p < 0.05) was validated by qRT-PCR, Western blotting and single-cell transcriptomics. Cellular function assays were performed to revealed the biological function of HAVCR1. Results: According to the TCGA-LIHC cohort analysis, the majority of the FA metabolism-related genes were expressed differentially in the HCC and normal tissues. The prognosis of patients with high-risk scores was observed to be worse. Multivariate COX regression analysis confirmed that the model can be employed as an independent prognosis factor for HCC patients. Furthermore, ssGSEA analysis revealed a link between the model and the levels of immune cell infiltration. Our model scoring mechanism also provides a high predictive value in HCC patients receiving anti-PDL1 immunotherapy. One of the FA metabolism-related genes, HAVCR1, displays a significant differential expression between normal and HCC cell lines. Hepatocellular carcinoma cells (Huh7, and HepG2) proliferation, motility, and invasion were all remarkably inhibited by HAVCR1 siRNA. Conclusion: Our study identified a novel FA metabolism-related prognostic model, revealing a better potential treatment and prevention strategy for HCC.

10.
Adv Mater ; 34(38): e2201651, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35583434

ABSTRACT

Globally, liver cancer, which is one of the major cancers worldwide, has attracted the growing attention of technological researchers for its high mortality and limited treatment options. Hydrogels are soft 3D network materials containing a large number of hydrophilic monomers. By adding moieties such as nitrobenzyl groups to the network structure of a cross-linked nanocomposite hydrogel, the click reaction improves drug-release efficiency in vivo, which improves the survival rate and prolongs the survival time of liver cancer patients. The application of a nanocomposite hydrogel drug delivery system can not only enrich the drug concentration at the tumor site for a long time but also effectively prevents the distant metastasis of residual tumor cells. At present, a large number of researches have been working toward the construction of responsive nanocomposite hydrogel drug delivery systems, but there are few comprehensive articles to systematically summarize these discoveries. Here, this systematic review summarizes the synthesis methods and related applications of nanocomposite responsive hydrogels with actions to external or internal physiological stimuli. With different physical or chemical stimuli, the structural unit rearrangement and the controlled release of drugs can be used for responsive drug delivery in different states.


Subject(s)
Hydrogels , Liver Neoplasms , Delayed-Action Preparations , Drug Delivery Systems , Humans , Hydrogels/chemistry , Liver Neoplasms/drug therapy , Nanogels
11.
Bioorg Med Chem Lett ; 65: 128717, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35390450

ABSTRACT

Tumor angiogenesis is an important biological process involved in the proliferation and migration of endothelial cells, regulated by Ang/Tie-2 signaling pathways, which is essential for tumor growth and metastasis. Therefore, blocking Ang/Tie-2 signaling pathways is a promising anti-angiogenic strategy for tumor treatment. 2,5-Diketopiperazines (DKPs) are a kind of bioactive compounds derived from marine fungi and they present a wide spectrum of pharmacological properties, particularly in the field of cancer treatment. Herein, a DKP marine natural product, Cryptoechinuline D (Cry D) was applied to structural modification and twelve derivatives were synthesized. Among which, compound 5 showed significant inhibitory activity against HUVECs with an IC50 value of 12.6 µmol/L, which weakened the proliferation, migration and invasion of HUVECs by inhibiting the Ang2/Tie-2 signaling pathway. The results of these evaluations indicated that compound 5 might be a promising anti-angiogeneic agent and worth further optimization and development for cancer therapy.


Subject(s)
Biological Products , Neoplasms , Angiogenesis Inhibitors/pharmacology , Biological Products/metabolism , Biological Products/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Neoplasms/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism
13.
J Recept Signal Transduct Res ; 42(1): 52-59, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33167774

ABSTRACT

Atherosclerosis is a chronic disease of arteries, which constitutes the pathological basis of a series of cardiovascular diseases. The inflammatory response of vascular endothelial cells mediated by oxidized low density lipoprotein (ox-LDL) is the early behavior and main signal of atherosclerosis. In this study, the damage model of vascular endothelial cells treated with ox-LDL was used to reproduce the damage process of vascular endothelial cells in the process of atherosclerosis. Cell viability was detected by CCK-8. The release levels of reactive oxygen species, nitric oxide, and superoxide dismutase (SOD) were detected by commercial kits. EdU cell proliferation assay was used to detect cell proliferation, real-time fluorescent quantitative PCR and Western blot were used to detect the expression level of related genes. The results showed we successfully constructed a vascular endothelial injury model by incubating vascular endothelial cells with gradient concentrations of ox-LDL. The incubation of safflor yellow A (SYA) partially restored the loss of viability of vascular endothelial cells mediated by ox-LDL, and SYA could promote the proliferation of injured vascular endothelial cells. In addition, SYA may transmit related signals through the AMPK pathway to protect vascular endothelial cells from ox-LDL-mediated damage. All these results provide a further understanding of the occurrence and development of atherosclerosis, provide a theoretical basis for the use of SYA-related drugs in the treatment of cardiovascular diseases, and provide a reference paradigm for studying the pharmacology, toxicology, and mechanism of action of key active substances in TCM.


Subject(s)
Atherosclerosis , Chalcone/analogs & derivatives , Oxidative Stress , Quinones/pharmacology , Apoptosis , Atherosclerosis/drug therapy , Chalcone/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Lipoproteins, LDL/metabolism
14.
Small ; 17(51): e2105237, 2021 12.
Article in English | MEDLINE | ID: mdl-34791793

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most fatal malignancies with few effective treatment options all around the world. The efficacy of the arisen immune checkpoint therapy is still uncertain due to local immunosuppression. In order to further overcome T cell suppression in the tumor immune microenvironment while promoting the immune response of antigen-presenting cells, a biointerfacing antagonizing T-cell inhibitory nanoparticles (BAT NPs) has been developed by cloaking platelet membrane on the PLGA microsphere surface to load T-cell immunoglobulin domain and mucin domain-3 antibodies (anti-TIM-3) as well as PD-L1. Notably, in addition to activating the proliferation and migration of T cells, the contained anti-TIM-3 can cooperate with PD-L1 checkpoint blockade to exert therapeutic effects. Furthermore, the components of BAT NPs like anti-TIM-3 and platelet can act together for collagen deposition in tumor starvation treatment. Thus, a novel targeting therapeutic strategy that can effectively reverse the immune-inhibiting microenvironment is effectively applied to PD-L1 checkpoint combination therapy. Such therapeutic effect can subsequently activate the effector T lymphocytes and antigen presentation of dendritic cells as well as the polarization of M1-type macrophages. Last, the study presented the synergistic effect of immune therapeutic adjuvants and BAT NPs components in achieving tumor inhibition and prolonging tumor-burden survival.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Carcinoma, Hepatocellular/drug therapy , Humans , Liver Neoplasms/drug therapy , T-Lymphocytes , Tumor Microenvironment
15.
Front Bioeng Biotechnol ; 9: 695635, 2021.
Article in English | MEDLINE | ID: mdl-34692650

ABSTRACT

Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related death worldwide, which lacks effective inhibition of progression and metastasis in the advanced clinical stage. Mesoporous silica nanoparticle (MSN)-based cytotoxic or immunoregulatory drug-loading strategies have attracted widespread attention in the recent years. As a representative of mesoporous biomaterials, MSNs have good biological characteristics and immune activation potential and can cooperate with adjuvants against HCC. This review summarizes the possible future development of the field from the perspective of tumor immunity and aims to stimulate the exploration of the immune mechanism of MSN-based therapy. Through this point of view, we hope to develop new clinical immune drugs that can be applied to HCC clinical management in the future.

16.
BMC Microbiol ; 21(1): 279, 2021 10 16.
Article in English | MEDLINE | ID: mdl-34654370

ABSTRACT

BACKGROUND: Dextran sulfate sodium (DSS) replicates ulcerative colitis (UC)-like colitis in murine models. However, the microbial characteristics of DSS-triggered colitis require further clarification. To analyze the changes in gut microbiota associated with DSS-induced acute and chronic colitis. METHODS: Acute colitis was induced in mice by administering 3% DSS for 1 week in the drinking water, and chronic colitis was induced by supplementing drinking water with 2.5% DSS every other week for 5 weeks. Control groups received the same drinking water without DSS supplementation. The histopathological score and length of the colons, and disease activity index (DAI) were evaluated to confirm the presence of experimental colitis. Intestinal microbiota was profiled by 16S rDNA sequencing of cecal content. RESULTS: Mice with both acute and chronic DSS-triggered colitis had significantly higher DAI and colon histopathological scores in contrast to the control groups (P < 0.0001, P < 0.0001), and the colon was remarkably shortened (P < 0.0001, P < 0.0001). The gut microbiota α-diversity was partly downregulated in both acute and chronic colitis groups in contrast to their respective control groups (Pielou index P = 0.0022, P = 0.0649; Shannon index P = 0.0022, P = 0.0931). The reduction in the Pielou and Shannon indices were more obvious in mice with acute colitis (P = 0.0022, P = 0.0043). The relative abundance of Bacteroides and Turicibacter was increased (all P < 0.05), while that of Lachnospiraceae, Ruminococcaceae, Ruminiclostridium, Rikenella, Alistipes, Alloprevotella, and Butyricicoccus was significantly decreased after acute DSS induction (all P < 0.05). The relative abundance of Bacteroides, Akkermansia, Helicobacter, Parabacteroides, Erysipelatoclostridium, Turicibacter and Romboutsia was also markedly increased (all P < 0.05), and that of Lachnospiraceae_NK4A136_group, Alistipes, Enterorhabdus, Prevotellaceae_UCG-001, Butyricicoccus, Ruminiclostridium_6, Muribaculum, Ruminococcaceae_NK4A214_group, Family_XIII_UCG-001 and Flavonifractor was significantly decreased after chronic DSS induction (all P < 0.05). CONCLUSION: DSS-induced acute and chronic colitis demonstrated similar symptoms and histopathological changes. The changes in the gut microbiota of the acute colitis model were closer to that observed in UC. The acute colitis model had greater abundance of SCFAs-producing bacteria and lower α-diversity compared to the chronic colitis model.


Subject(s)
Biodiversity , Colitis/chemically induced , Colitis/microbiology , Dextran Sulfate , Gastrointestinal Microbiome/physiology , Acute Disease , Animals , Chronic Disease , Colitis/pathology , Disease Models, Animal , Mice
17.
Aging (Albany NY) ; 13(11): 14571-14589, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34088885

ABSTRACT

Emodin has shown pharmacological effects in the treatment of infection with severe acute respiratory syndrome coronavirus-2, which leads to coronavirus disease 2019 (COVID-19). Thus, we speculated that emodin may possess anti-COVID-19 activity. In this study, using bioinformatics databases, we screened and harvested the candidate genes or targets of emodin and COVID-19 prior to the determination of pharmacological targets and molecular mechanisms of emodin against COVID-19. We discovered core targets for the treatment of COVID-19, including mitogen-activated protein kinase 1 (MAPK1), tumor protein (TP53), tumor necrosis factor (TNF), caspase-3 (CASP3), epidermal growth factor receptor (EGFR), vascular endothelial growth factor A (VEGFA), interleukin 1B (IL1B), mitogen-activated protein kinase 14 (MAPK14), prostaglandin-endoperoxide synthase 2 (PTGS2), B-cell lymphoma-2-like protein 1 (BCL2L1), interleukin-8 (CXCL8), myeloid cell leukemia-1 (MCL1), and colony stimulating factor 2 (CSF2). The GO analysis of emodin against COVID-19 mainly included cytokine-mediated signaling pathway, response to lipopolysaccharide, response to molecule of bacterial origin, developmental process involved in reproduction, and reproductive structure development. The KEGG results exhibited that the molecular pathways mainly included IL-17 signaling pathway, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, pertussis, proteoglycans in cancer, pathways in cancer, MAPK signaling pathway, NOD-like receptor signaling pathway, NF-kappa B signaling pathway, etc. Also, molecular docking results revealed the docking capability between emodin and COVID-19 and the potential pharmacological activity of emodin against COVID-19. Taken together, these findings uncovered the targets and pharmacological mechanisms of emodin for treating COVID-19 and suggested that the vital targets might be used as biomarkers against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Emodin/therapeutic use , Molecular Targeted Therapy , Protein Kinase Inhibitors/therapeutic use , Emodin/pharmacology , Humans , Molecular Docking Simulation , Protein Interaction Maps , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects
18.
World J Stem Cells ; 13(4): 317-330, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33959221

ABSTRACT

BACKGROUND: As human placenta-derived mesenchymal stem cells (hP-MSCs) exist in a physiologically hypoxic microenvironment, various studies have focused on the influence of hypoxia. However, the underlying mechanisms remain to be further explored. AIM: The aim was to reveal the possible mechanisms by which hypoxia enhances the proliferation of hP-MSCs. METHODS: A hypoxic cell incubator (2.5% O2) was used to mimic a hypoxic microenvironment. Cell counting kit-8 and 5-ethynyl-20-deoxyuridine incorporation assays were used to assay the proliferation of hP-MSCs. The cell cycle was profiled by flow cytometry. Transcriptome profiling of hP-MSCs under hypoxia was performed by RNA sequencing. CD99 mRNA expression was assayed by reverse transcription-polymerase chain reaction. Small interfering RNA-mediated hypoxia-inducible factor 1α (HIF-1α) or CD99 knockdown of hP-MSCs, luciferase reporter assays, and the ERK1/2 signaling inhibitor PD98059 were used in the mechanistic analysis. Protein expression was assayed by western blotting; immunofluorescence assays were conducted to evaluate changes in expression levels. RESULTS: Hypoxia enhanced hP-MSC proliferation, increased the expression of cyclin E1, cyclin-dependent kinase 2, and cyclin A2, and decreased the expression of p21. Under hypoxia, CD99 expression was increased by HIF-1α. CD99-specific small interfering RNA or the ERK1/2 signaling inhibitor PD98059 abrogated the hypoxia-induced increase in cell proliferation. CONCLUSION: Hypoxia promoted hP-MSCs proliferation in a manner dependent on CD99 regulation of the MAPK/ERK signaling pathway in vitro.

19.
Shanghai Kou Qiang Yi Xue ; 29(5): 550-553, 2020 Oct.
Article in Chinese | MEDLINE | ID: mdl-33543226

ABSTRACT

PURPOSE: To compare the clinical efficiency of two types of T-shaped coronectomy applied in extraction of impacted mandibular third molars. METHODS:One hundred and twenty patients meeting with the criteria were randomly divided into 2 groups. Two types of T-shaped coronectomy were applied in extraction of impacted mandibular third molars. Indexes including operation time, intraoperative anxiety, postoperative pain and limitation of mouth opening were recorded and analyzed with SPSS 22.0 software package. RESULTS: Patients with transverse method experienced more time in operation [(17.41±3.72) vs (15.22±2.53) min], with less intraoperative anxiety (P<0.05). There was no significant difference in postoperative pain and limitation of mouth opening(P>0.05) between two methods. CONCLUSIONS: Transverse T-shaped method can alleviate intraoperative anxiety, while longitudinal method is more conducive to shortening operation time.


Subject(s)
Molar, Third , Tooth, Impacted , Humans , Mandible/surgery , Molar , Molar, Third/diagnostic imaging , Molar, Third/surgery , Pain, Postoperative , Tooth Extraction , Tooth, Impacted/diagnostic imaging , Tooth, Impacted/surgery
20.
Zhongguo Zhong Yao Za Zhi ; 44(14): 3055-3063, 2019 Jul.
Article in Chinese | MEDLINE | ID: mdl-31602853

ABSTRACT

In this study,a method using ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry( UPLC-Q-TOF-MS/MS) was established to identify complicated chemical constituents of Wikstroemia indica. Chromatographic separation was performed on an AcclaimTMRSLC 120-C18 column( 2. 1 mm×100 mm,2. 2 µm) using gradient elution with 0. 2% ammonium formate buffer salt solution( A)-0. 2% ammonium formate buffer salt solution methanol( B) as mobile phase. The column temperature was maintained at 30 ℃. The analytes were determined by positive and negative ion modes with electro-spray ionization source. A total of 52 compounds( including eleven coumarins,thirteen flavonoids,ten lignans,two amides,four phenolic acids,six sesquiterpenes and six other compounds) were identified or tentatively characterized from the water extract of W. indica by comparing their retention times and MS spectra with those of authentic standards or literature datas. Three compounds were found for the first time from W.indica namely isomer of indicanone,ß-hydroxypropiovanillone and epiprocurcumenol. Furthermore,the fragmentation rules of some compounds were speculated and summarized. In addition,the cleavage pathways of guaiane sesquiterpenes were described for the first time,which can provide reference for studying the fragmentation pathways of similar compounds. This study provides an easy way to identify chemical constituents of traditional Chinese medicine and a basis for the further study on chemical fundamentals of W. indica.


Subject(s)
Drugs, Chinese Herbal/chemistry , Plant Extracts/chemistry , Wikstroemia/chemistry , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...