Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Small ; : e2400498, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863125

ABSTRACT

Sodium-ion battery (SIB) is a candidate for the stationary energy storage systems because of the low cost and high abundance of sodium. However, the energy density and lifespan of SIBs suffer severely from the irreversible consumption of the Na-ions for the formation of the solid electrolyte interphase (SEI) layer and other side reactions on the electrodes. Here, Na3.5C6O6 is proposed as an air-stable high-efficiency sacrificial additive in the cathode to compensate for the lost sodium. It is characteristic of low desodiation (oxidation) potential (3.4-3.6 V vs. Na+/Na) and high irreversible desodiation capacity (theoretically 378 mAh g-1). The feasibility of using Na3.5C6O6 as a sodium compensation additive is verified with the improved electrochemical performances of a Na2/3Ni1/3Mn1/3Ti1/3O2ǀǀhard carbon cells and cells using other cathode materials. In addition, the structure of Na3.5C6O6 and its desodiation path are also clarified on the basis of comprehensive physical characterizations and the density functional theory (DFT) calculations. This additive decomposes completely to supply abundant Na ions during the initial charge without leaving any electrochemically inert species in the cathode. Its decomposition product C6O6 enters the carbonate electrolyte without bringing any detectable negative effects. These findings open a new avenue for elevating the energy density and/or prolonging the lifetime of the high-energy-density secondary batteries.

2.
Front Cell Neurosci ; 18: 1381279, 2024.
Article in English | MEDLINE | ID: mdl-38863498

ABSTRACT

Transforming growth factor ß1 (TGF-ß1) has a neuroprotective function in traumatic brain injury (TBI) through its anti-inflammatory and immunomodulatory properties. However, the precise mechanisms underlying the neuroprotective actions of TGF-ß1 on the cortex require further investigation. In this study, we were aimed to investigate the regulatory function of TGF-ß1 on neuronal autophagy and apoptosis using an in vitro primary cortical neuron trauma-injury model. LDH activity was assayed to measure cell viability, and intracellular [Ca2+] was measured using Fluo-4-AM in an in vitro primary cortical neuron trauma-injury model. RNA-sequencing (RNAseq), immunofluorescent staining, transmission electron microscopy (TEM), western blot and CTSD activity detection were employed. We observed significant enrichment of DEGs related to autophagy, apoptosis, and the lysosome pathway in trauma-injured cortical neurons. TEM confirmed the presence of autophagosomes as well as autophagolysosomes. Western blot revealed upregulation of autophagy-related protein light chain 3 (LC3-II/LC3-I), sequestosome 1 (SQSTM1/p62), along with apoptosis-related protein cleaved-caspase 3 in trauma-injured primary cortical neurons. Furthermore, trauma-injured cortical neurons showed an upregulation of lysosomal marker protein (LAMP1) and lysosomal enzyme mature cathepsin D (mCTSD), but a decrease in the activity of CTSD enzyme. These results indicated that apoptosis was up-regulated in trauma- injured cortical neurons at 24 h, accompanied by lysosomal dysfunction and impaired autophagic flux. Notably, TGF-ß1 significantly reversed these changes. Our results suggested that TGF-ß1 exerted neuroprotective effects on trauma- injured cortical neurons by reducing lysosomal dysfunction, decreasing the accumulation of autophagosomes and autophagolysosomes, and enhancing autophagic flux.

3.
Front Immunol ; 15: 1397483, 2024.
Article in English | MEDLINE | ID: mdl-38915409

ABSTRACT

Background: Cytomegalovirus (CMV) reactivation is a significant concern following allogeneic stem cell transplantation. While previous research has highlighted the anti-CMV reactivation effect of γδ T cells in immunocompromised transplant patients, their characterization in recipients at high risk of CMV reactivation remains limited. Methods: This study focused on D+/R+ recipients (where both donor and recipient are CMV seropositive) at high risk of CMV reactivation. We analyzed 28 patients who experienced CMV recurrence within 100 days post-allogeneic hematopoietic stem cell transplantation, along with 36 matched recipients who did not experience CMV recurrence. Clinical data from both groups were compared, and risk factors for CMV reactivation were identified. Additionally, CMV viral load was measured, and flow cytometric analysis was conducted to assess changes in peripheral blood γδ T cell proportions, subpopulation distribution, and differentiation status. We also analyzed the CDR3 repertoire of the TCR δ chain in different γδ T cell subsets. Functional analysis was performed by measuring the lysis of CMV-infected cells upon stimulation. Results: CMV reactivation post-transplantation was associated with acute graft-versus-host disease (aGvHD) and reactivation of non-CMV herpesviruses. Notably, CMV reactivation led to sustained expansion of γδ T cells, primarily within the Vδ2neg γδ T cell subpopulation, with a trend toward differentiation from Naive to effector memory cells. Analysis of the δ chain CDR3 repertoire revealed a delay in the reconstitution of clonal diversity in Vδ2neg γδ T cells following CMV reactivation, while Vδ2pos T cells remained unaffected. Upon stimulation with CMV-infected MRC5 cells, the Vδ2neg γδ T cell subpopulation emerged as the primary effector cell group producing IFN-γ and capable of lysing CMV-infected cells. Moreover, our findings suggest that NKG2D is not necessary involved in Vδ2neg γδ T cell-mediated anti-CMV cytotoxicity. Conclusion: This study provides novel insights into the role of γδ T cells in the immune response to CMV reactivation in transplantation recipients at high risk of CMV infection. Specifically, the Vδ2neg γδ T cell subpopulation appears to be closely associated with CMV reactivation, underscoring their potential role in controlling infection and reflecting CMV reactivation in HSCT patients.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Hematopoietic Stem Cell Transplantation , Receptors, Antigen, T-Cell, gamma-delta , Transplantation, Homologous , Virus Activation , Humans , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Male , Cytomegalovirus/immunology , Cytomegalovirus/physiology , Virus Activation/immunology , Female , Adult , Middle Aged , Hematopoietic Stem Cell Transplantation/adverse effects , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Graft vs Host Disease/immunology , Young Adult , Memory T Cells/immunology , Aged
4.
Opt Express ; 32(7): 11123-11133, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38570968

ABSTRACT

In this paper, the principles of spectral data cube reconstruction based on an integral field snapshot imaging spectrometer and GPU-based acceleration are presented. The primary focus is on improving the reconstruction algorithm using GPU parallel computing technology to enhance the computational efficiency for real-time applications. And the computational tasks of the spectral reconstruction algorithm were transferred to the GPU through program parallelization and memory optimization, resulting in significant performance gains. Experimental results indicate that the average processing time of the GPU-based parallel algorithm is approximately 29.43 ms, showing a substantial acceleration ratio of about 14.27 compared to the traditional CPU serial algorithm with an average processing time of around 420.46 ms. The study aims to refine the GPU parallelization algorithm for continued improvement in computational efficiency and overall performance. The anticipated applications of this research include providing crucial technical support for the perception and monitoring of crop growth traits in agricultural production, contributing to the modernization and advancement of intelligence in the field.

5.
J Med Chem ; 67(7): 5567-5590, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38512060

ABSTRACT

Androgen receptor (AR) has been extensively established as a potential therapeutic target for nearly all stages of prostate cancer (PCa). However, acquired resistance to AR-targeted drugs inevitably develops and severely limits their clinical efficacy. Particularly, there currently exists no efficient treatment for patients expressing the constitutively active AR splice variants, such as AR-V7. Herein, we report the structure-activity relationship studies of 55 N-heterocycle-substituted hydantoins, which identified the structural motifs required for AR/AR-V7 degradation. Among them, the most potent compound 27c exhibited selective AR/AR-V7 degradation over other hormone receptors and excellent antiproliferative activities in LNCaP and 22RV1 cells. RNA sequence analysis confirmed that 27c effectively suppressed transcriptional activity of the AR signaling pathway. Importantly, 27c demonstrated potent antitumor efficacy in an enzalutamide-resistant 22RV1 xenograft model. These results highlight the potential of 27c as a promising dual AR/AR-V7 degrader for overcoming drug resistance in advanced PCa expressing AR splice variants.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Cell Line, Tumor , Signal Transduction , Structure-Activity Relationship , Nitriles/pharmacology , Drug Resistance, Neoplasm
6.
Angew Chem Int Ed Engl ; 63(16): e202400562, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38382041

ABSTRACT

Halide solid electrolytes, known for their high ionic conductivity at room temperature and good oxidative stability, face notable challenges in all-solid-state Li-ion batteries (ASSBs), especially with unstable cathode/solid electrolyte (SE) interface and increasing interfacial resistance during cycling. In this work, we have developed an Al3+-doped, cation-disordered epitaxial nanolayer on the LiCoO2 surface by reacting it with an artificially constructed AlPO4 nanoshell; this lithium-deficient layer featuring a rock-salt-like phase effectively suppresses oxidative decomposition of Li3InCl6 electrolyte and stabilizes the cathode/SE interface at 4.5 V. The ASSBs with the halide electrolyte Li3InCl6 and a high-loading LiCoO2 cathode demonstrated high discharge capacity and long cycling life from 3 to 4.5 V. Our findings emphasize the importance of specialized cathode surface modification in preventing SE degradation and achieving stable cycling of halide-based ASSBs at high voltages.

7.
J Med Chem ; 67(5): 3606-3625, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38375763

ABSTRACT

DNA polymerase theta (Polθ) has recently emerged as a new attractive synthetic lethal target involved in DNA damage repair. Inactivating Polθ alone or in combination with PARP inhibitors has demonstrated substantial therapeutic potential against tumors with homologous recombination (HR) defects such as alternation of BRCA genes. Herein, we report the design and proof of concept of a highly potent dual Polθ/PARP inhibitor 25d, which exhibited low nanomolar inhibitory activities against both Polθ and PARP1. Compared to combination treatment, 25d demonstrated superior antitumor efficacy in both MDA-MB-436 cells and xenografts by inducing more DNA damage and apoptosis. Importantly, 25d retained sensitivity in PARP inhibitor-resistant MDA-MB-436 cells with 53BP1 defect. Altogether, these findings illustrate the potential advantages of 25d, a first-in-class dual Polθ/PARP inhibitor, over monotherapy in treating HR-deficient tumors, including those with acquired PARP inhibitor resistance.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Neoplasms/drug therapy , DNA Repair , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Homologous Recombination , Cell Line, Tumor
8.
Cells Tissues Organs ; 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310851

ABSTRACT

INTRODUCTION: Ascending aortic aneurysm is a serious health risk. In order to study ascending aortic aneurysms, elastase and calcium ion treatment for aneurysm formation are mainly used, but their aneurysm formation time is long, the aneurysm formation rate is low. Thus, this study aimed to construct a rat model of ascending aorta aneurysm with a short modeling time and high aneurysm formation rate, which may mimic the pathological processes of human ascending aorta aneurysm. METHODS: Cushion needles with different pipe diameters (1.0, 1.2, 1.4 and 1.6 mm) were used to establish a human-like rat model of ascending aortic aneurysm by narrowing the ascending aorta of rats and increasing the force of blood flow on the vessel wall. The vascular diameters were evaluated using color Doppler ultrasonography after two weeks. The characteristics of ascending aortic aneurysm in rats were detected by Masson's trichrome staining, Verhoeff's Van Gieson staining and hematoxylin and eosin staining while RT-PCR were utilized to assess the total RNA of cytokine interleukin-1ß, interleukin 6, transforming growth factor-beta1 and metalloproteinase 2. RESULTS: Two weeks after surgery, the ultrasound images and the statistical analysis demonstrated that the diameter of the ascending aorta in rats increased more than 1.5 times, similar to that in humans, indicating the success of animal modeling of ascending aortic aneurysm. Moreover, the optimal constriction diameter of the ascending aortic aneurysm model is 1.4 mm by the statistical analysis of the rate of ascending aortic aneurysm and mortality rate in rats with different constriction diameters. CONCLUSIONS: The human-like ascending aortic aneurysm model developed in this study can be used for the studies of the pathological processes and mechanisms in ascending aortic aneurysm in a more clinically relevant fashion.

9.
Adv Mater ; 36(19): e2313135, 2024 May.
Article in English | MEDLINE | ID: mdl-38306967

ABSTRACT

To address the problems associated with Li metal anodes, a fluoride-rich solid-like electrolyte (SLE) that combines the benefits of solid-state and liquid electrolytes is presented. Its unique triflate-group-enhanced frame channels facilitate the formation of a functional inorganic-rich solid electrolyte interphase (SEI), which not only improves the reversibility and interfacial charge transfer of Li anodes but also ensures uniform and compact Li deposition. Furthermore, these triflate groups contribute to the decoupling of Li+ and provide hopping sites for rapid Li+ transport, enabling a high room-temperature ionic conductivity of 1.1 mS cm-1 and a low activation energy of 0.17 eV, making it comparable to conventional liquid electrolytes. Consequently, Li symmetric cells using such SLE achieve extremely stable plating/stripping cycling over 3500 h at 0.5 mA cm-2 and support a high critical current up to 2 mA cm-2. The assembled Li||LiFePO4 solid-like batteries exhibit exceptional cyclability for over 1 year and a half, even outperforming liquid cells. Additionally, high-voltage cylindrical cells and high-capacity pouch cells are demonstrated, corroborating much simpler processibility in battery assembly compared to all-solid-state batteries.

10.
Nat Mater ; 23(2): 219-223, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177378

ABSTRACT

Two-dimensional moiré materials are formed by overlaying two layered crystals with small differences in orientation or/and lattice constant, where their direct coupling generates moiré potentials. Moiré materials have emerged as a platform for the discovery of new physics and device concepts, but while moiré materials are highly tunable, once formed, moiré lattices cannot be easily altered. Here we demonstrate the electrostatic imprinting of moiré lattices onto a target monolayer semiconductor. The moiré potential-created by a lattice of electrons that is supported by a Mott insulator state in a remote MoSe2/WS2 moiré bilayer-imprints a moiré potential that generates flat bands and correlated insulating states in the target monolayer and can be turned on/off by gate tuning the doping density of the moiré bilayer. Additionally, we studied the interplay between the electrostatic and structural relaxation contributions to moiré imprinting. Our results demonstrate a pathway towards gate control of moiré lattices.

11.
Micromachines (Basel) ; 14(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38138367

ABSTRACT

The increasing demand for accurate imaging spectral information in remote sensing detection has driven the development of hyperspectral remote sensing instruments towards a larger view field and higher resolution. As the core component of the spectrometer slit, the designed length reaches tens of millimeters while the precision maintained within the µm level. Such precision requirements pose challenges to traditional machining and laser processing. In this paper, a high-precision air slit was created with a large aspect ratio through MEMS technology on SOI silicon wafers. In particular, a MEMS slit was prepared with a width of 15 µm and an aspect ratio exceeding 4000:1, and a spectral spectroscopy system was created and tested with a Hg-Cd light source. As a result, the spectral spectrum was linear within the visible range, and a spectral resolution of less than 1 nm was obtained. The standard deviation of resolution is only one-fourth of that is seen in machined slits across various view fields. This research provided a reliable and novel manufacturing technique for high-precision air slits, offering technical assistance in developing high-resolution wide-coverage imaging spectrometers.

12.
Molecules ; 28(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38138523

ABSTRACT

The explorations of new three-dimensional (3D) microporous metal halides, especially the iodoargentate-based hybrids, and understanding of their structure-activity relationships are still quite essential but full of great challenges. Herein, with the aromatic 4,4'-dpa (4,4'-dpa = 4,4'-dipyridylamine) ligands as the structural directing agents, we solvothermal synthesized and structurally characterized a novel member of microporous iodoargentate family, namely [H2-4,4'-dpa]Ag6I8 (1). Compound 1 possesses a unique and complicated 3D [Ag6I8]n2n- anionic architecture that was built up from the unusual hexameric [Ag6I13] secondary building units (SBUs). Research on optical properties indicated that compound 1 exhibited semiconductor behavior, with an optical band gap of 2.50 eV. Under the alternate irradiation of light, prominent photoelectric switching abilities could be achieved by compound [H2-4,4'-dpa]Ag6I8, whose photocurrent densities (0.37 µA·cm-2 for visible light and 1.23 µA·cm-2 for full-spectrum) compared well with or exceeded those of some high-performance halide counterparts. Further theoretical calculations revealed that the relatively dispersed conduction bands (CBs) structures in compound 1 induced higher electron mobilities, which may be responsible for its good photoelectricity. Presented in this work also comprised the analyses of Hirshfeld surface, powder X-ray diffractometer (PXRD), thermogravimetric measurement, energy-dispersive X-ray spectrum (EDX) along with X-ray photoelectron spectroscopy (XPS).

13.
Nature ; 622(7981): 69-73, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37494955

ABSTRACT

Chern insulators, which are the lattice analogues of the quantum Hall states, can potentially manifest high-temperature topological orders at zero magnetic field to enable next-generation topological quantum devices1-3. Until now, integer Chern insulators have been experimentally demonstrated in several systems at zero magnetic field3-8, whereas fractional Chern insulators have been reported in only graphene-based systems under a finite magnetic field9,10. The emergence of semiconductor moiré materials11, which support tunable topological flat bands12,13, provides an opportunity to realize fractional Chern insulators13-16. Here we report thermodynamic evidence of both integer and fractional Chern insulators at zero magnetic field in small-angle twisted bilayer MoTe2 by combining the local electronic compressibility and magneto-optical measurements. At hole filling factor ν = 1 and 2/3, the system is incompressible and spontaneously breaks time-reversal symmetry. We show that they are integer and fractional Chern insulators, respectively, from the dispersion of the state in the filling factor with an applied magnetic field. We further demonstrate electric-field-tuned topological phase transitions involving the Chern insulators. Our findings pave the way for the demonstration of quantized fractional Hall conductance and anyonic excitation and braiding17 in semiconductor moiré materials.

14.
Cell Biol Toxicol ; 39(5): 2431-2435, 2023 10.
Article in English | MEDLINE | ID: mdl-36169743

ABSTRACT

Horseshoe bats (Rhinolophus sinicus) might help maintain coronaviruses severely affecting human health, such as severe acute respiratory syndrome coronavirus (SARS-CoV). Bats may be more tolerant of viral infection than other mammals due to their unique immune system, but the exact mechanism remains to be fully explored. During the coronavirus disease 2019 (COVID-19) pandemic, multiple animal species were diseased by coronavirus infection, especially in the respiratory system. Herein, a comparative analysis with single nucleus transcriptomic data of the lungs across four species, including horseshoe bat, cat, tiger, and pangolin, were conducted. The distribution of entry factors for twenty-eight respiratory viruses was characterized for the four species. Our findings might increase our understanding of the immune background of horseshoe bats.


Subject(s)
COVID-19 , Chiroptera , Tigers , Animals , Humans , Pangolins , Lung
15.
Acta Biomater ; 165: 86-101, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-35803504

ABSTRACT

Islet transplantation has poor long-term efficacy because of the lack of extracellular matrix support and neovascularization; this limits its wide application in diabetes research. In this study, we develop a 3D-printed islet organoid by combining a pancreatic extracellular matrix (pECM) and hyaluronic acid methacrylate (HAMA) as specific bioinks. The HAMA/pECM hydrogel was validated in vitro to maintain islet cell adhesion and morphology through the Rac1/ROCK/MLCK signaling pathway, which helps improve islet function and activity. Further, in vivo experiments confirmed that the 3D-printed islet-encapsulated HAMA/pECM hydrogel increases insulin levels in diabetic mice, maintains blood glucose levels within a normal range for 90 days, and rapidly secretes insulin in response to blood glucose stimulation. In addition, the HAMA/pECM hydrogel can facilitate the attachment and growth of new blood vessels and increase the density of new vessels. Meanwhile, the designed 3D-printed structure was conducive to the formation of vascular networks and it promoted the construction of 3D-printed islet organoids. In conclusion, our experiments optimized the HAMA/pECM bioink composition and 3D-printed structure of islet organoids with promising therapeutic effects compared with the HAMA hydrogel group that can be potentially used in clinical applications to improve the effectiveness and safety of islet transplantation in vivo. STATEMENT OF SIGNIFICANCE: The extraction process of pancreatic islets can easily cause damage to the extracellular matrix and vascular system, resulting in poor islet transplantation efficiency. We developed a new tissue-specific bioink by combining pancreatic extracellular matrix (pECM) and hyaluronic acid methacrylate (HAMA). The islet organoids constructed by 3D printing can mimic the microenvironment of the pancreas and maintain islet cell adhesion and morphology through the Rac1/ROCK/MLCK signaling pathway, thereby improving islet function and activity. In addition, the 3D-printed structures we designed are favorable for the formation of new blood vessel networks, bringing hope for the long-term efficacy of islet transplantation.


Subject(s)
Bioprinting , Diabetes Mellitus, Experimental , Mice , Animals , Tissue Engineering/methods , Hyaluronic Acid/pharmacology , Blood Glucose , Diabetes Mellitus, Experimental/therapy , Pancreas , Organoids , Extracellular Matrix/chemistry , Insulin , Hydrogels/pharmacology , Hydrogels/chemistry , Printing, Three-Dimensional , Bioprinting/methods , Tissue Scaffolds/chemistry
16.
J Atheroscler Thromb ; 30(7): 778-785, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36184558

ABSTRACT

AIMS: This study aimed to examine the relationship between physical performance and peripheral artery disease (PAD) in different age groups of Chinese older adults. METHODS: We enrolled 1357 relatively healthy ≥ 65 years old participants of Chinese ethnicity. We classified the participants into two age categories, the pre-old group (65-74 years, n=968) and the old group (≥ 75 years, n=389). We assessed the cross-sectional association of the ankle-brachial index (ABI), which is used for the classification of patients with PAD (ABI ≤ 0.9). Physical performance mainly focused on muscle strength, mobility, and balance, which were measured via hand grip, 4 m walking speed, and the Timed Up and Go Test. RESULTS: A total of 125 (9.2%) patients met the diagnostic criteria and were defined as having PAD. After multivariate adjustment, we found that grip strength and 4 m walking speed were correlated negatively with PAD (odds ratio (OR)=0.953, 95% confidence interval (CI)=0.919-0.989; OR=0.296, 95% CI=0.093-0.945) in pre-old participants, whereas balance (OR=1.058, 95% CI=1.007-1.112) was correlated positively with PAD only in older participants. CONCLUSION: Our study further confirmed the association between physical performance and PAD in community-dwelling older Chinese adults. Muscle strength and mobility correlated negatively with PAD, and balance was positively associated with PAD in older participants. These findings might help with better early screening and management of PAD.


Subject(s)
Independent Living , Peripheral Arterial Disease , Humans , Middle Aged , Aged , Walking , Hand Strength , Cross-Sectional Studies , Postural Balance , East Asian People , Time and Motion Studies , Peripheral Arterial Disease/diagnosis , Peripheral Arterial Disease/epidemiology , Physical Functional Performance
18.
Clin Transl Med ; 12(8): e886, 2022 08.
Article in English | MEDLINE | ID: mdl-35917402

ABSTRACT

BACKGROUND: The exact animal origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains obscure and understanding its host range is vital for preventing interspecies transmission. METHODS: Herein, we applied single-cell sequencing to multiple tissues of 20 species (30 data sets) and integrated them with public resources (45 data sets covering 26 species) to expand the virus receptor distribution investigation. While the binding affinity between virus and receptor is essential for viral infectivity, understanding the receptor distribution could predict the permissive organs and tissues when infection occurs. RESULTS: Based on the transcriptomic data, the expression profiles of receptor or associated entry factors for viruses capable of causing respiratory, blood, and brain diseases were described in detail. Conserved cellular connectomes and regulomes were also identified, revealing fundamental cell-cell and gene-gene cross-talks from reptiles to humans. CONCLUSIONS: Overall, our study provides a resource of the single-cell atlas of the animal kingdom which could help to identify the potential host range and tissue tropism of viruses and reveal the host-virus co-evolution.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , COVID-19/genetics , Host Specificity , Humans , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
19.
Cell Rep ; 39(12): 110979, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35732129

ABSTRACT

Vertebrate evolution was accompanied by two rounds of whole-genome duplication followed by functional divergence in terms of regulatory circuits and gene expression patterns. As a basal and slow-evolving chordate species, amphioxus is an ideal paradigm for exploring the origin and evolution of vertebrates. Single-cell sequencing has been widely used to construct the developmental cell atlas of several representative species of vertebrates (human, mouse, zebrafish, and frog) and tunicates (sea squirts). Here, we perform single-nucleus RNA sequencing (snRNA-seq) and single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) for different stages of amphioxus (covering embryogenesis and adult tissues). With the datasets generated, we constructed a developmental tree for amphioxus cell fate commitment and lineage specification and characterize the underlying key regulators and genetic regulatory networks. The data are publicly available on the online platform AmphioxusAtlas.


Subject(s)
Lancelets , Animals , Chromatin/genetics , Gene Expression , Genome , Lancelets/genetics , Mice , Zebrafish/genetics
20.
Nat Commun ; 13(1): 3620, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35750885

ABSTRACT

Pigs are valuable large animal models for biomedical and genetic research, but insights into the tissue- and cell-type-specific transcriptome and heterogeneity remain limited. By leveraging single-cell RNA sequencing, we generate a multiple-organ single-cell transcriptomic map containing over 200,000 pig cells from 20 tissues/organs. We comprehensively characterize the heterogeneity of cells in tissues and identify 234 cell clusters, representing 58 major cell types. In-depth integrative analysis of endothelial cells reveals a high degree of heterogeneity. We identify several functionally distinct endothelial cell phenotypes, including an endothelial to mesenchymal transition subtype in adipose tissues. Intercellular communication analysis predicts tissue- and cell type-specific crosstalk between endothelial cells and other cell types through the VEGF, PDGF, TGF-ß, and BMP pathways. Regulon analysis of single-cell transcriptome of microglia in pig and 12 other species further identifies MEF2C as an evolutionally conserved regulon in the microglia. Our work describes the landscape of single-cell transcriptomes within diverse pig organs and identifies the heterogeneity of endothelial cells and evolutionally conserved regulon in microglia.


Subject(s)
Endothelial Cells , Microglia , Animals , Microglia/metabolism , Phenotype , Regulon/genetics , Single-Cell Analysis , Swine , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...