Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 513
Filter
1.
Immun Ageing ; 21(1): 29, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730291

ABSTRACT

BACKGROUND: Quercetin is a flavonol compound widely distributed in plants that possesses diverse biological properties, including antioxidative, anti-inflammatory, anticancer, neuroprotective and senescent cell-clearing activities. It has been shown to effectively alleviate neurodegenerative diseases and enhance cognitive functions in various models. The immune system has been implicated in the regulation of brain function and cognitive abilities. However, it remains unclear whether quercetin enhances cognitive functions by interacting with the immune system. RESULTS: In this study, middle-aged female mice were administered quercetin via tail vein injection. Quercetin increased the proportion of NK cells, without affecting T or B cells, and improved cognitive performance. Depletion of NK cells significantly reduces cognitive ability in mice. RNA-seq analysis revealed that quercetin modulated the RNA profile of hippocampal tissues in aging animals towards a more youthful state. In vitro, quercetin significantly inhibited the differentiation of Lin-CD117+ hematopoietic stem cells into NK cells. Furthermore, quercetin promoted the proportion and maturation of NK cells by binding to the MYH9 protein. CONCLUSIONS: In summary, our findings suggest that quercetin promotes the proportion and maturation of NK cells by binding to the MYH9 protein, thereby improving cognitive performance in middle-aged mice.

4.
Plant Physiol ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588029

ABSTRACT

Salt gland is an epidermal Na+ secretory structure that enhances salt resistance in the recretohalophyte sea lavender (Limonium bicolor). To elucidate the salt gland development trajectory and related molecular mechanisms, we performed single-cell RNA sequencing of L. bicolor protoplasts from young leaves at salt gland initiation and differentiation stages. Dimensionality reduction analyses defined 19 transcriptionally distinct cell clusters, which were assigned into four broad populations-promeristem, epidermis, mesophyll, and vascular tissue-verified by in situ hybridization. Cytokinin was further proposed to participate in salt gland development by the expression patterns of related genes and cytological evidence. By comparison analyses of scRNA-seq with exogenous application of 6-benzylaminopurine, we delineated five salt gland development-associated sub-clusters and defined salt gland specific differentiation trajectories from sub-clusters 8, 4, or 6 to sub-cluster 3 and 1. Additionally, we validated the participation of TRIPTYCHON and the interacting protein Lb7G34824 in salt gland development, which regulated the expression of cytokinin metabolism and signaling related genes such as GLABROUS INFLORESCENCE STEMS 2 to maintain cytokinin homeostasis during salt gland development. Our results generated a gene expression map of young leaves at single-cell resolution for the comprehensive investigation of salt gland determinants and cytokinin participation that helps elucidate cell fate determination during epidermis formation and evolution in recretohalophytes.

5.
J Integr Plant Biol ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597776

ABSTRACT

Yield improvement has long been an important task for soybean breeding in the world in order to meet the increasing demand for food and animal feed. miR396 genes have been shown to negatively regulate grain size in rice, but whether miR396 family members may function in a similar manner in soybean is unknown. Here, we generated eight soybean mutants harboring different combinations of homozygous mutations in the six soybean miR396 genes through genome editing with clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas)12SF01 in the elite soybean cultivar Zhonghuang 302 (ZH302). Four triple mutants (mir396aci, mir396acd, mir396adf, and mir396cdf), two quadruple mutants (mir396abcd and mir396acfi), and two quintuple mutants (mir396abcdf and mir396bcdfi) were characterized. We found that plants of all the mir396 mutants produced larger seeds compared to ZH302 plants. Field tests showed that mir396adf and mir396cdf plants have significantly increased yield in growth zones with relatively high latitude which are suited for ZH302 and moderately increased yield in lower latitude. In contrast, mir396abcdf and mir396bcdfi plants have increased plant height and decreased yield in growth zones with relatively high latitude due to lodging issues, but they are suited for low latitude growth zones with increased yield without lodging problems. Taken together, our study demonstrated that loss-of-function of miR396 genes leads to significantly enlarged seed size and increased yield in soybean, providing valuable germplasms for breeding high-yield soybean.

6.
Front Plant Sci ; 15: 1360925, 2024.
Article in English | MEDLINE | ID: mdl-38545386

ABSTRACT

Gene targeting (GT) is a promising tool for precise manipulation of genome sequences, however, GT in seed plants remains a challenging task. The simple and direct way to improve the efficiency of GT via homology-directed repair (HDR) is to increase the frequency of double-strand breaks (DSBs) at target sites in plants. Here we report an all-in-one approach of GT in Arabidopsis by combining a transcriptional and a translational enhancer for the Cas expression. We find that facilitating the expression of Cas9 and Cas12a variant by using enhancers can improve DSB and subsequent knock-in efficiency in the Arabidopsis genome. These results indicate that simply increasing Cas protein expression at specific timings - egg cells and early embryos - can improve the establishment of heritable GTs. This simple approach allows for routine genome engineering in plants.

7.
Plant Biotechnol J ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38425137

ABSTRACT

Succulents, valued for their drought tolerance and ornamental appeal, are important in the floriculture market. However, only a handful of succulent species can be genetically transformed, making it difficult to improve these plants through genetic engineering. In this study, we adapted the recently developed cut-dip-budding (CDB) gene delivery system to transform three previously recalcitrant succulent varieties - the dicotyledonous Kalanchoe blossfeldiana and Crassula arborescens and the monocotyledonous Sansevieria trifasciata. Capitalizing on the robust ability of cut leaves to regenerate shoots, these plants were successfully transformed by directly infecting cut leaf segments with the Agrobacterium rhizogenes strain K599. The transformation efficiencies were approximately 74%, 5% and 3.9%-7.8%, respectively, for K. blossfeldiana and C. arborescens and S. trifasciata. Using this modified CDB method to deliver the CRISPR/Cas9 construct, gene editing efficiency in K. blossfeldiana at the PDS locus was approximately 70%. Our findings suggest that succulents with shoot regeneration ability from cut leaves can be genetically transformed using the CDB method, thus opening up an avenue for genetic engineering of these plants.

8.
World J Gastroenterol ; 30(5): 485-498, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38414591

ABSTRACT

BACKGROUND: Gastric cancer (GC) is associated with high mortality rates. Bile acids (BAs) reflux is a well-known risk factor for GC, but the specific mechanism remains unclear. During GC development in both humans and animals, BAs serve as signaling molecules that induce metabolic reprogramming. This confers additional cancer phenotypes, including ferroptosis sensitivity. Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression. However, it is not fully defined if BAs can influence GC progression by modulating ferroptosis. AIM: To reveal the mechanism of BAs regulation in ferroptosis of GC cells. METHODS: In this study, we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis. We used gain and loss of function assays to examine the impacts of farnesoid X receptor (FXR) and BTB and CNC homology 1 (BACH1) overexpression and knockdown to obtain further insights into the molecular mechanism involved. RESULTS: Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells. This effect correlated with increased glutathione (GSH) concentrations, a reduced GSH to oxidized GSH ratio, and higher GSH peroxidase 4 (GPX4) expression levels. Subsequently, we confirmed that BAs exerted these effects by activating FXR, which markedly increased the expression of GSH synthetase and GPX4. Notably, BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR. Finally, our results suggested that FXR could significantly promote GC cell proliferation, which may be closely related to its anti-ferroptosis effect. CONCLUSION: This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSH-GPX4 axis in GC cells. This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.


Subject(s)
Ferroptosis , Stomach Neoplasms , Animals , Humans , Bile Acids and Salts , Signal Transduction
9.
Curr Biol ; 34(4): 881-894.e7, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38350447

ABSTRACT

In Arabidopsis, stomatal development and patterning require tightly regulated cell division and cell-fate differentiation that are controlled by key transcription factors and signaling molecules. To identify new regulators of stomatal development, we assay the transcriptomes of plants bearing enriched stomatal lineage cells that undergo active division. A member of the novel regulators at the plasma membrane (NRPM) family annotated as hydroxyproline-rich glycoproteins was identified to highly express in stomatal lineage cells. Overexpressing each of the four NRPM genes suppressed stomata formation, while the loss-of-function nrpm triple mutants generated severely overproduced stomata and abnormal patterning, mirroring those of the erecta receptor family and MAPKKK yoda null mutants. Manipulation of the subcellular localization of NRPM1 surprisingly revealed its regulatory roles as a peripheral membrane protein instead of a predicted cell wall protein. Further functional characterization suggests that NRPMs function downstream of the EPF1/2 peptide ligands and upstream of the YODA MAPK pathway. Genetic and cell biological analyses reveal that NRPM may promote the localization and function of the ERECTA receptor proteins at the cell surface. Therefore, we identify NRPM as a new class of signaling molecules at the plasma membrane to regulate many aspects of plant growth and development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Plant Stomata/physiology , Cell Membrane/metabolism , Gene Expression Regulation, Plant
10.
J Integr Plant Biol ; 66(4): 642-644, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38390811

ABSTRACT

Knockout of the soybean (Glycine max) betaine aldehyde dehydrogenase genes GmBADH1 and GmBADH2 using CRISPR/Cas12i3 enhances the aroma of soybeans. Soy milk made from the gmbadh1/2 double mutant seeds exhibits a much stronger aroma, which consumers prefer; this mutant has potential for enhancing quality in soy-based products.


Subject(s)
Glycine max , Soy Milk , Glycine max/genetics , Odorants/analysis , Plant Breeding
11.
Innovation (Camb) ; 5(2): 100564, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38379787

ABSTRACT

The type V-I CRISPR-Cas system is becoming increasingly more attractive for genome editing. However, natural nucleases of this system often exhibit low efficiency, limiting their application. Here, we used structure-guided rational design and protein engineering to optimize an uncharacterized Cas12i nuclease, Cas12i3. As a result, we developed Cas-SF01, a Cas12i3 variant that exhibits significantly improved gene editing activity in mammalian cells. Cas-SF01 shows comparable or superior editing performance compared to SpCas9 and other Cas12 nucleases. Compared to natural Cas12i3, Cas-SF01 has an expanded PAM range and effectively recognizes NTTN and noncanonical NATN and TTVN PAMs. In addition, we identified an amino acid substitution, D876R, that markedly reduced the off-target effect while maintaining high on-target activity, leading to the development of Cas-SF01HiFi (high-fidelity Cas-SF01). Finally, we show that Cas-SF01 has high gene editing activities in mice and plants. Our results suggest that Cas-SF01 can serve as a robust gene editing platform with high efficiency and specificity for genome editing applications in various organisms.

13.
Theor Appl Genet ; 137(1): 15, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38184817

ABSTRACT

Solanum americanum serves as a promising source of resistance genes against potato late blight and is considered as a leafy vegetable for complementary food and nutrition. The limited availability of high-quality genome assemblies and gene annotations has hindered the exploration and exploitation of stress-resistance genes in S. americanum. Here, we present a chromosome-level genome assembly of a thermotolerant S. americanum ecotype and identify a crucial heat-inducible transcription factor gene, SaHSF17, essential for heat tolerance. The CRISPR/Cas9 system-mediated knockout of SaHSF17 results in remarkably reduced thermotolerance in S. americanum, exhibiting a significant suppression of multiple HSP gene expressions under heat treatment. Furthermore, our transcriptome analysis and anthocyanin component investigation of fruits indicated that delphinidins are the major anthocyanins accumulated in the mature dark-purple fruits. The accumulation of delphinidins and other pigment components during fruit ripening in S. americanum coincides with the transcriptional regulation of key genes, particularly the F3'5'H and F3'H genes, in the anthocyanin biosynthesis pathway. By integrating existing knowledge, the development of this high-quality reference genome for S. americanum will facilitate the identification and utilization of novel abiotic and biotic stress-resistance genes for improvement of Solanaceae and other crops.


Subject(s)
Solanum , Thermotolerance , Anthocyanins , Fruit/genetics , Thermotolerance/genetics , Solanum/genetics , Gene Editing , Chromosomes
14.
Proc Natl Acad Sci U S A ; 121(3): e2308812120, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38190540

ABSTRACT

Aging in an individual refers to the temporal change, mostly decline, in the body's ability to meet physiological demands. Biological age (BA) is a biomarker of chronological aging and can be used to stratify populations to predict certain age-related chronic diseases. BA can be predicted from biomedical features such as brain MRI, retinal, or facial images, but the inherent heterogeneity in the aging process limits the usefulness of BA predicted from individual body systems. In this paper, we developed a multimodal Transformer-based architecture with cross-attention which was able to combine facial, tongue, and retinal images to estimate BA. We trained our model using facial, tongue, and retinal images from 11,223 healthy subjects and demonstrated that using a fusion of the three image modalities achieved the most accurate BA predictions. We validated our approach on a test population of 2,840 individuals with six chronic diseases and obtained significant difference between chronological age and BA (AgeDiff) than that of healthy subjects. We showed that AgeDiff has the potential to be utilized as a standalone biomarker or conjunctively alongside other known factors for risk stratification and progression prediction of chronic diseases. Our results therefore highlight the feasibility of using multimodal images to estimate and interrogate the aging process.


Subject(s)
Aging , Electric Power Supplies , Humans , Face , Biomarkers , Chronic Disease
15.
Hortic Res ; 11(1): uhad250, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38269296

ABSTRACT

Cytosine and adenosine base editors (CBE and ABE) have been widely used in plants, greatly accelerating gene function research and crop breeding. Current base editors can achieve efficient A-to-G and C-to-T/G/A editing. However, efficient and heritable A-to-Y (A-to-T/C) editing remains to be developed in plants. In this study, a series of A-to-K base editor (AKBE) systems were constructed for monocot and dicot plants. Furthermore, nSpCas9 was replaced with the PAM-less Cas9 variant (nSpRY) to expand the target range of the AKBEs. Analysis of 228 T0 rice plants and 121 T0 tomato plants edited using AKBEs at 18 endogenous loci revealed that, in addition to highly efficient A-to-G substitution (41.0% on average), the plant AKBEs can achieve A-to-T conversion with efficiencies of up to 25.9 and 10.5% in rice and tomato, respectively. Moreover, the rice-optimized AKBE generates A-to-C conversion in rice, with an average efficiency of 1.8%, revealing the significant value of plant-optimized AKBE in creating genetic diversity. Although most of the A-to-T and A-to-C edits were chimeric, desired editing types could be transmitted to the T1 offspring, similar to the edits generated by the traditional ABE8e. Besides, using AKBEs to target tyrosine (Y, TAT) or cysteine (C, TGT) achieved the introduction of an early stop codon (TAG/TAA/TGA) of target genes, demonstrating its potential use in gene disruption.

16.
J Integr Plant Biol ; 66(1): 17-19, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38078380

ABSTRACT

A sample delivery method, modified from cut-dip-budding, uses explants with robust shoot regeneration ability, enabling transformation and gene editing in medicinal plants, bypassing tissue culture and hairy root formation. This method has potential for applications across a wide range of plant species.


Subject(s)
Gene Editing , Plants, Medicinal , Gene Editing/methods , Plants, Medicinal/genetics , Transformation, Genetic , Plants, Genetically Modified/genetics
17.
Plant Biotechnol J ; 22(2): 379-385, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37822083

ABSTRACT

The CRISPR/Cas type V-I is a family of programmable nuclease systems that prefers a T-rich protospacer adjacent motif (PAM) and is guided by a short crRNA. In this study, the genome-editing application of Cas12i3, a type V-I family endonuclease, was characterized in rice. We developed a CRIPSR/Cas12i3-based Multiplex direct repeats (DR)-spacer Array Genome Editing (iMAGE) system that was efficient in editing various genes in rice. Interestingly, iMAGE produced chromosomal structural variations with a higher frequency than CRISPR/Cas9. In addition, we developed base editors using deactivated Cas12i3 and generated herbicide-resistant rice plants using the base editors. These CRIPSR/Cas12i3-based genome editing systems will facilitate precision molecular breeding in plants.


Subject(s)
Gene Editing , Oryza , Gene Editing/methods , CRISPR-Cas Systems/genetics , Oryza/genetics , Plants/genetics , Endonucleases/genetics
19.
Stress Biol ; 3(1): 56, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38078942

ABSTRACT

Identification of environmental stress sensors is one of the most important research topics in plant abiotic stress research. Traditional strategies to identify stress sensors or early signaling components based on the cell membrane as a primary site of sensing and calcium signal as a second messenger have had only limited successes. Therefore, the current theoretical framework underlying stress sensing in plants should be reconsidered and additional mechanisms need to be introduced. Recently, accumulating evidence has emerged to suggest that liquid-liquid phase separation (LLPS) is a major mechanism for environmental stress sensing and response in plants. In this review, we briefly introduce LLPS regarding its concept, compositions, and dynamics, and then summarize recent progress of LLPS research in plants, emphasizing the contribution of LLPS to the sensing of various environmental stresses, such as dehydration, osmotic stress, and low and high temperatures. Finally, we propose strategies to identify key proteins that sense and respond to environmental stimuli on the basis of LLPS, and discuss the research directions of LLPS in plant abiotic stress responses and its potential application in enhancing stress tolerance in crops.

SELECTION OF CITATIONS
SEARCH DETAIL
...