Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 630(8016): 353-359, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867127

ABSTRACT

Exoskeletons have enormous potential to improve human locomotive performance1-3. However, their development and broad dissemination are limited by the requirement for lengthy human tests and handcrafted control laws2. Here we show an experiment-free method to learn a versatile control policy in simulation. Our learning-in-simulation framework leverages dynamics-aware musculoskeletal and exoskeleton models and data-driven reinforcement learning to bridge the gap between simulation and reality without human experiments. The learned controller is deployed on a custom hip exoskeleton that automatically generates assistance across different activities with reduced metabolic rates by 24.3%, 13.1% and 15.4% for walking, running and stair climbing, respectively. Our framework may offer a generalizable and scalable strategy for the rapid development and widespread adoption of a variety of assistive robots for both able-bodied and mobility-impaired individuals.


Subject(s)
Exoskeleton Device , Walking , Humans , Male , Computer Simulation , Running/physiology , Robotics/instrumentation , Learning , Female
2.
Ann Biomed Eng ; 51(7): 1471-1484, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36681749

ABSTRACT

Gait patterns are critical to health monitoring, gait impairment assessment, and wearable device control. Unrhythmic gait pattern detection under community-based conditions is a new frontier in this area. The present paper describes a high-accuracy gait phase estimation and prediction algorithm built on a two-stage artificial neural network. This work targets to develop an algorithm that can estimate and predict the gait cycle in real time using a portable controller with only two IMU sensors (one on each thigh) in the community setting. Our algorithm can detect the gait phase in unrhythmic conditions during walking, stair ascending, and stair descending, and classify these activities with standing. Moreover, our algorithm is able to predict both future intra- and inter-stride gait phases, offering a potential means to improve wearable device controller performance. The proposed data-driven algorithm is based on a dataset consisting of 5 able-bodied subjects and validated on 3 different able-bodied subjects. Under unrhythmic activity situations, validation shows that the algorithm can accurately identify multiple activities with 99.55% accuracy, and estimate ([Formula: see text]: 6.3%) and predict 200-ms-ahead ([Formula: see text]: 8.6%) the gait phase percentage in real time, which are on average 57.7 and 54.0% smaller than the error from the event-based method in the same conditions. This study showcases a solution to estimate and predict gait status for multiple unrhythmic activities, which may be deployed to controllers for wearable robots or health monitoring devices.


Subject(s)
Gait , Movement Disorders , Humans , Walking , Lower Extremity , Neural Networks, Computer , Algorithms , Biomechanical Phenomena
3.
IEEE Trans Robot ; 38(3): 1442-1459, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36338603

ABSTRACT

State-of-the-art exoskeletons are typically limited by low control bandwidth and small range stiffness of actuators which are based on high gear ratios and elastic components (e.g., series elastic actuators). Furthermore, most exoskeletons are based on discrete gait phase detection and/or discrete stiffness control resulting in discontinuous torque profiles. To fill these two gaps, we developed a portable lightweight knee exoskeleton using quasi-direct drive (QDD) actuation that provides 14 Nm torque (36.8% biological joint moment for overground walking). This paper presents 1) stiffness modeling of torque-controlled QDD exoskeletons and 2) stiffness-based continuous torque controller that estimates knee joint moment in real-time. Experimental tests found the exoskeleton had high bandwidth of stiffness control (16 Hz under 100 Nm/rad) and high torque tracking accuracy with 0.34 Nm Root Mean Square (RMS) error (6.22%) across 0-350 Nm/rad large range stiffness. The continuous controller was able to estimate knee moments accurately and smoothly for three walking speeds and their transitions. Experimental results with 8 able-bodied subjects demonstrated that our exoskeleton was able to reduce the muscle activities of all 8 measured knee and ankle muscles by 8.60%-15.22% relative to unpowered condition, and two knee flexors and one ankle plantar flexor by 1.92%-10.24% relative to baseline (no exoskeleton) condition.

4.
IEEE Trans Pattern Anal Mach Intell ; 44(1): 488-501, 2022 01.
Article in English | MEDLINE | ID: mdl-32750811

ABSTRACT

The brain's vascular network dynamically affects its development and core functions. It rapidly responds to abnormal conditions by adjusting properties of the network, aiding stabilization and regulation of brain activities. Tracking prominent arterial changes has clear clinical and surgical advantages. However, the arterial network functions as a system; thus, local changes may imply global compensatory effects that could impact the dynamic progression of a disease. We developed automated personalized system-level analysis methods of the compensatory arterial changes and mean blood flow behavior from a patient's clinical images. By applying our approach to data from a patient with aggressive brain cancer compared with healthy individuals, we found unique spatiotemporal patterns of the arterial network that could assist in predicting the evolution of glioblastoma over time. Our personalized approach provides a valuable analysis tool that could augment current clinical assessments of the progression of glioblastoma and other neurological disorders affecting the brain.


Subject(s)
Brain Neoplasms , Glioblastoma , Algorithms , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Glioblastoma/diagnostic imaging , Humans , Magnetic Resonance Imaging
5.
IEEE ASME Trans Mechatron ; 27(4): 1837-1845, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36909775

ABSTRACT

High-performance prostheses are crucial to enable versatile activities like walking, squatting, and running for lower extremity amputees. State-of-the-art prostheses are either not powerful enough to support demanding activities or have low compliance (low backdrivability) due to the use of high speed ratio transmission. Besides speed ratio, gearbox design is also crucial to the compliance of wearable robots, but its role is typically ignored in the design process. This paper proposed an analytical backdrive torque model that accurately estimate the backdrive torque from both motor and transmission to inform the robot design. Following this model, this paper also proposed methods for gear transmission design to improve compliance by reducing inertia of the knee prosthesis. We developed a knee prosthesis using a high torque actuator (built-in 9:1 planetary gear) with a customized 4:1 low-inertia planetary gearbox. Benchtop experiments show the backdrive torque model is accurate and proposed prosthesis can produce 200 Nm high peak torque (shield temperature <60°C), high compliance (2.6 Nm backdrive torque), and high control accuracy (2.7/8.1/1.7 Nm RMS tracking errors for 1.25 m/s walking, 2 m/s running, and 0.25 Hz squatting, that are 5.4%/4.1%/1.4% of desired peak torques). Three able-bodied subject experiments showed our prosthesis could support agile and high-demanding activities.

6.
Sci Rep ; 10(1): 16373, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009445

ABSTRACT

Pulse transit time (PTT) represents a potential approach for cuff-less blood pressure (BP) monitoring. Conventionally, PTT is determined by (1) measuring (a) ECG and ear, finger, or toe PPG waveforms or (b) two of these PPG waveforms and (2) detecting the time delay between the waveforms. The conventional PTTs (cPTTs) were compared in terms of correlation with BP in humans. Thirty-two volunteers [50% female; 52 (17) (mean (SD)) years; 25% hypertensive] were studied. The four waveforms and manual cuff BP were recorded before and after slow breathing, mental arithmetic, cold pressor, and sublingual nitroglycerin. Six cPTTs were detected as the time delays between the ECG R-wave and ear PPG foot, R-wave and finger PPG foot [finger pulse arrival time (PAT)], R-wave and toe PPG foot (toe PAT), ear and finger PPG feet, ear and toe PPG feet, and finger and toe PPG feet. These time delays were also detected via PPG peaks. The best correlation by a substantial extent was between toe PAT via the PPG foot and systolic BP [- 0.63 ± 0.05 (mean ± SE); p < 0.001 via one-way ANOVA]. Toe PAT is superior to other cPTTs including the popular finger PAT as a marker of changes in BP and systolic BP in particular.


Subject(s)
Biomarkers/metabolism , Blood Pressure/physiology , Blood Pressure Determination/methods , Electrocardiography/methods , Female , Fingers/physiology , Heart Rate/physiology , Humans , Male , Middle Aged , Monitoring, Physiologic/methods , Photoplethysmography/methods , Pulse Wave Analysis/methods , Respiratory Rate/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...