Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 345: 118876, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37678018

ABSTRACT

Tailings produced by mining engineering and metal smelting industries have become a major challenge to the ecological environment and human health. Environmental compatibility, mechanical stability, and economic feasibility have restricted the treatment and reuse of tailings. A novel solidification/stabilization technology using hydantoin epoxy resin (HER) and red clay for copper tailing treatment was developed, and the leaching behaviors of solidified/stabilized copper tailings were investigated in this paper. The leaching characteristics were analyzed by toxicity characteristic leaching procedure (TCLP) leaching tests. Besides, the influence of red clay content and acid rain on the permeability characteristics and leaching characteristics were investigated based on flexible-wall column tests and microstructure tests. The results showed that the copper tailings solidification/stabilization technology with HER and red clay had excellent performances in toxicity stabilization. The leaching concentration of Cu in TCLP tests and flexible wall column tests remained within the limit specified by the Chinese national standard, and the concentration of Cu decreased significantly with the increase of the red clay content. Moreover, acid rain leaching changed the mineral composition and microstructure of solidified tailings, and the porosity of the samples increased with the dissolution of soluble minerals. Additionally, the hydraulic conductivities decreased slightly with the increase in the pH value of acid rain, and the solidified sample with 5% red clay had the lowest hydraulic conductivity.


Subject(s)
Acid Rain , Hydantoins , Metals, Heavy , Humans , Copper , Clay , Epoxy Resins , Minerals , Metals, Heavy/chemistry
2.
Chemosphere ; 340: 139897, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37604342

ABSTRACT

Soil and groundwater Cr(VI) pollution resulting from improper disposal and accidental spills is a critical problem worldwide. In this study, a comprehensive study was conducted to assess the hydrogeological conditions of a contaminated site, obtain spatiotemporal distribution and trend forecasts of pollutant Cr(VI), and determine the feasibility of applying clayey engineered barriers for pollution control. The results showed that the hydraulic conductivity (K) of the clayey barrier (1.56E-5 m/d) is several orders of magnitude lower than that of the stratum beneath the contaminated site, with K values ranging from 0.0014 to 4.76 m/d. Cr(VI) exhibits high mobility and a much higher concentration in the vadose zone, with maximum values of 6100 mg/kg in topsoil and 2090 mg/L in the perched aquifer. The simulation results indicated that the groundwater in the vicinity of the contaminated site, as well as downstream of the Lianshui River, is seriously threatened by Cr(VI). Notably, the pollution plume could occur downstream of the Lianshui River after 8 years. The retention efficiency of clayey engineered barriers will decrease over time, at 61.6% after 8 years and 33% after 20 years. This work contributes to an in-depth understanding of Cr(VI) migration at contaminated sites.


Subject(s)
Environmental Pollutants , Environmental Pollution , China , Chromium , Clay
3.
J Environ Manage ; 304: 114338, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35021595

ABSTRACT

Groundwater pollution has become increasingly severe in recent years, particularly owing to leachate leakage in landfills. In this study, the migration of Cu2+ in a landfill and the retention behavior of a compacted laterite-bentonite engineered barrier system toward the contaminant were analyzed by a numerical simulation based on laboratory and field test results. The results show that the hydraulic conductivity of the laterite-bentonite mixture decreased with an increase in the bentonite ratio: The hydraulic conductivities of the laterite-bentonite mixture were 4.718 × 10-7, 2.103 × 10-7, 7.899 × 10-8, 3.918 × 10-8, and 1.614 × 10-8 cm/s when the bentonite ratios were 0, 2%, 5%, 10%, and 20%, respectively. The hydraulic conductivity of laterite and of the mixture with a bentonite ratio of 2% decreased gradually under infiltration of deionized water and CuSO4 solutions with concentrations of 0.01 and 0.1 mol/L. This could be attributed to the increased degree of flocculation of laterite with the increase in the solution concentration. The results of the numerical simulation indicate that the migration range of Cu2+ after 3650 days was approximately 1500 m. The retention efficiency of a 0.5 m engineered barrier for Cu2+ was 67%. However, the retention efficiency exceeded 83% when the engineered barrier thickness was increased to 1.0 m. The results of the laboratory tests and numerical simulation demonstrate that a compacted laterite-bentonite engineered barrier system has a good retention effect on Cu2+. These observations may provide effective concepts for the prevention and control of groundwater pollution in landfills.


Subject(s)
Groundwater , Refuse Disposal , Water Pollutants, Chemical , Bentonite , Waste Disposal Facilities , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...