Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Neuroeng Rehabil ; 21(1): 96, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845000

ABSTRACT

BACKGROUND: Telerehabilitation is a promising avenue for improving patient outcomes and expanding accessibility. However, there is currently no spine-related assessment for telerehabilitation that covers multiple exercises. METHODS: We propose a wearable system with two inertial measurement units (IMUs) to identify IMU locations and estimate spine angles for ten commonly prescribed spinal degeneration rehabilitation exercises (supine chin tuck head lift rotation, dead bug unilateral isometric hold, pilates saw, catcow full spine, wall angel, quadruped neck flexion/extension, adductor open book, side plank hip dip, bird dog hip spinal flexion, and windmill single leg). Twelve healthy subjects performed these spine-related exercises, and wearable IMU data were collected for spine angle estimation and IMU location identification. RESULTS: Results demonstrated average mean absolute spinal angle estimation errors of 2.59 ∘ and average classification accuracy of 92.97%. The proposed system effectively identified IMU locations and assessed spine-related rehabilitation exercises while demonstrating robustness to individual differences and exercise variations. CONCLUSION: This inexpensive, convenient, and user-friendly approach to spine degeneration rehabilitation could potentially be implemented at home or provide remote assessment, offering a promising avenue to enhance patient outcomes and improve accessibility for spine-related rehabilitation. TRIAL REGISTRATION:  No. E2021013P in Shanghai Jiao Tong University.


Subject(s)
Exercise Therapy , Spine , Telerehabilitation , Humans , Male , Telerehabilitation/instrumentation , Adult , Female , Spine/physiology , Exercise Therapy/methods , Exercise Therapy/instrumentation , Wearable Electronic Devices , Young Adult , Accelerometry/instrumentation , Accelerometry/methods , Biomechanical Phenomena
2.
Article in English | MEDLINE | ID: mdl-38224523

ABSTRACT

Wearable lower-limb joint angle estimation using a reduced inertial measurement unit (IMU) sensor set could enable quick, economical sports injury risk assessment and motion capture; however the vast majority of existing research requires a full IMU set attached to every related body segment and is implemented in only a single movement, typically walking. We thus implemented 3-dimensional knee and hip angle estimation with a reduced IMU sensor set during yoga, golf, swimming (simulated lower body swimming in a seated posture), badminton, and dance movements. Additionally, current deep-learning models undergo an accuracy drop when tested with new and unseen activities, which necessitates collecting large amounts of data for the new activity. However, collecting large datasets for every new activity is time-consuming and expensive. Thus, a transfer learning (TL) approach with long short-term memory neural networks was proposed to enhance the model's generalization ability towards new activities while minimizing the need for a large new-activity dataset. This approach could transfer the generic knowledge acquired from training the model in the source-activity domain to the target-activity domain. The maximum improvement in estimation accuracy (RMSE) achieved by TL is 23.6 degrees for knee flexion/extension and 22.2 degrees for hip flexion/extension compared to without TL. These results extend the application of motion capture with reduced sensor configurations to a broader range of activities relevant to injury prevention and sports training. Moreover, they enhance the capacity of data-driven models in scenarios where acquiring a substantial amount of training data is challenging.


Subject(s)
Dancing , Golf , Racquet Sports , Wearable Electronic Devices , Yoga , Humans , Swimming , Knee Joint , Machine Learning , Biomechanical Phenomena
3.
Article in English | MEDLINE | ID: mdl-37938963

ABSTRACT

Accurate shoulder joint angle estimation is crucial for analyzing joint kinematics and kinetics across a spectrum of movement applications including in athletic performance evaluation, injury prevention, and rehabilitation. However, accurate IMU-based shoulder angle estimation is challenging and the specific influence of key error factors on shoulder angle estimation is unclear. We thus propose an analytical model based on quaternions and rotation vectors that decouples and quantifies the effects of two key error factors, namely sensor-to-segment misalignment and sensor orientation estimation error, on shoulder joint rotation error. To validate this model, we conducted experiments involving twenty-five subjects who performed five activities: yoga, golf, swimming, dance, and badminton. Results showed that improving sensor-to-segment misalignment along the segment's extension/flexion dimension had the most significant impact in reducing the magnitude of shoulder joint rotation error. Specifically, a 1° improvement in thorax and upper arm calibration resulted in a reduction of 0.40° and 0.57° in error magnitude. In comparison, improving IMU heading estimation was only roughly half as effective (0.23° per 1°). This study clarifies the relationship between shoulder angle estimation error and its contributing factors, and identifies effective strategies for improving these error factors. These findings have significant implications for enhancing the accuracy of IMU-based shoulder angle estimation, thereby facilitating advancements in IMU-based upper limb rehabilitation, human-machine interaction, and athletic performance evaluation.


Subject(s)
Shoulder Joint , Shoulder , Humans , Range of Motion, Articular , Upper Extremity , Arm , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...