Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(19): 24723-24733, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695440

ABSTRACT

We demonstrated the use of hydrated calcium vanadate (CaV6O16·3H2O, denoted as CaVO-2) as a cathode for aqueous zinc-ion batteries (AZIBs). Nanoribbons of hydrated calcium vanadate facilitated shortening of the Zn2+ transport distance and accelerated zinc-ion insertion. The introduction of interlayer structure water increased the interlayer spacing of calcium vanadate and as a "lubricant". Ca2+ insertion also expanded the interlayer spacing and further stabilized the interlayer structure of vanadium-based oxide. The density functional theory results showed that the introduction of Ca2+ and structured water could effectively improve the diffusion kinetics, resulting in the rapid transport of zinc ions. As a result, AZIBs based on the CaVO-2 cathode offered high specific capacity (329.6 mAh g-1 at 200 mA g-1) and fast charge/discharge capability (147 mAh g-1 at 10 A g-1). Impressively, quasi-solid-state zinc-ion batteries based on the CaVO-2 cathode and polyacrylamide-cellulose nanofiber hydrogel electrolytes maintained an outstanding specific capacity and long cycle life (162 mAh g-1 over 10 000 cycles at 5 A g-1). This study provided a reliable strategy for metal-ion insertion and the structural water introduction of oxides to produce a high-quality cathode for ZIBs. Meanwhile, it provides ideas for the combination of vanadium-based materials and gel electrolytes to construct solid-state zinc-ion batteries.

2.
Heliyon ; 10(6): e28097, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38533021

ABSTRACT

Using solid-state electrolytes (SSEs) with excellent thermal and electrical stability to replace liquid electrolytes, and assembling solid-state lithium-ion batteries (SSLIBs) is considered the best solution to these safety issues. However, it is difficult for a single electrolyte to have the characteristics of high ionic conductivity, low interface resistance, and high stability of the counter electrode at the same time. In this work, the composite polymer electrolyte membrane (CPE) of inorganic Li1.3Al0.3Ti1.7(PO4)3 (LATP) and organic poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer was successfully prepared by traditional casting method. The addition of LATP (10 wt %) ceramic powder makes CPE membrane (CPE-10) exhibit excellent electrochemical performance: the lithium-ion transference number and electrochemical window are as high as 0.60 and 4.94 V, respectively. Moreover, the CPE-10 showed excellent Li-metal stability, thereby enabling the Li-Li symmetric cells to stably run for over 300 h at 0.1 mA/cm2 with effective lithium dendrite inhibition. When paired with a high-voltage LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode, the Li/CPE-10/NCM622 cell exhibited excellent electrochemical performance: the highest specific discharge capacity of 152 mAh/g could be conducted at 0.2C after 50 cycles corresponding to 100% Coulombic efficiencies. The prepared CPE-10 demonstrates excellent electrochemical performance, providing an effective design strategy for SSLMBs.

3.
Cancer Biomark ; 39(1): 1-13, 2024.
Article in English | MEDLINE | ID: mdl-37334578

ABSTRACT

OBJECTIVE: Accumulating evidence indicates that circular RNAs (circRNAs) contribute to breast cancer (BC) development and progression. However, the role of circ_0058063 in BC and its underlying molecular processes remain unclear. METHODS: The expression of circ_0058063, miR-557, and DLGAP5 in BC tissues and cells was determined using real time quantitative PCR or western blotting. The functions of circ_0058063 in BC cells were detected using CCK-8, Transwell, caspase-3 activity, and xenograft tumor assays. The specific binding of circ_0058063/miR-557 and DLGAP5/miR-557 was verified using RNA immunoprecipitation (RIP) and dual-luciferase reporter assays. RESULTS: circ_0058063 expression was upregulated in BC tissues and cells. circ_0058063 knockdown inhibited proliferation and migration but promoted apoptosis in MCF-7 and MDA-MB-231 cells in vitro. In vivo studies further validated that the knockdown of circ_0058063 repressed tumor growth. Mechanistically, circ_0058063 directly sponged miR-557 and negatively regulated its expression. Additionally, miR-557 inhibition reversed the tumor-suppressive effects of the circ_0058063 knockdown on the survival of MDA-MB-231 and MCF-7 cells. Moreover, miR-557 directly targeted DLGAP5. DLGAP5 knockdown suppressed MCF-7 and MDA-MB-231 cell growth, and these effects were reversed by miR-557 downregulation. CONCLUSION: Our findings verify that circ_0058063 acts as a sponge for miR-557 to upregulate DLGAP5 expression. These findings suggest that the circ_0058063/miR-557/DLGAP5 axis is an important regulator of oncogenic function and may be a promising therapeutic target for BC.


Subject(s)
Breast Neoplasms , MicroRNAs , Female , Humans , Apoptosis/genetics , Blotting, Western , Breast , Breast Neoplasms/genetics , Cell Proliferation/genetics , MicroRNAs/genetics , Neoplasm Proteins , RNA, Circular/genetics
4.
ACS Appl Mater Interfaces ; 15(48): 55734-55744, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37985366

ABSTRACT

Molybdenum sulfide has been widely investigated as a prospective anode material for Li+/Na+ storage because of its unique layered structure and high theoretical capacity. However, the enormous volume variation and poor conductivity limit the development of molybdenum sulfide. The rational design of a heterogeneous interface is of great importance to improve the structure stability and electrical conductivity of electrode materials. Herein, a high-temperature mixing method is implemented in the hydrothermal process to synthesize the hybrid structure of MoS2/V2O3@carbon-graphene (MoS2/V2O3@C-rGO). The MoS2/V2O3@C-rGO composites exhibit superior Li+/Na+ storage performance due to the construction of the interface between the MoS2 and V2O3 components and the introduction of carbon materials, delivering a prominent reversible capacity of 564 mAh g-1 at 1 A g-1 after 600 cycles for lithium-ion batteries and 376.3 mAh g-1 at 1 A g-1 after 450 cycles for sodium-ion batteries. Theoretical calculations confirm that the construction of the interface between the MoS2 and V2O3 components can accelerate the reaction kinetics and enhance the charge-ionic transport of molybdenum sulfide. The results illustrate that interfacial engineering may be an effective guide to obtain high-performance electrode materials for Li+/Na+ storage.

5.
RSC Adv ; 13(35): 24583-24593, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37593666

ABSTRACT

BaTiO3/CeO2 nanoparticles with heterogeneous structure were successfully synthesized via a gel-assisted hydrothermal method. The molar ratio of Ti/Ce was set as 1 : 0, 0.925 : 0.075, 0.9 : 0.1; 0.875 : 0.125, and 0.85 : 0.15 in the dried gels. Affected by the values of Ti/Ce, the particle sizes of hydrothermal products decreased obviously, and the surface of nanoparticles became rough and even had small protrusions. XRD, SEM, HRTEM, XPS, DRS, ESR, and PFM were used to characterize the nanoparticle textures. We speculated that the main body and surface of nanoparticles were BaTiO3 and CeO2 protrusions, respectively. The catalytic performance of BaTiO3/CeO2 nanoparticles was characterized by their abilities to degrade RhB in water under different external conditions (light irradiation, ultrasonic oscillation, or both). In all test groups, BaTiO3/CeO2 nanoparticles with a Ti/Ce molar ratio of 0.875 : 0.125 in the initial dried gel exhibited the strongest catalytic ability when light irradiation and ultrasonication were applied simultaneously owing to the appropriate amount of Ce3+ and oxygen vacancies.

6.
Nanomaterials (Basel) ; 13(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37570583

ABSTRACT

Pure TiO2 and 3% Y-doped TiO2 (3% Y-TiO2) were prepared by a one-step hydrothermal method. Reduced TiO2 (TiO2-H2) and 3% Y-TiO2 (3% Y-TiO2-H2) were obtained through the thermal conversion treatment of Ar-H2 atmosphere at 500 °C for 3 h. By systematically comparing the crystalline phase, structure, morphological features, and photocatalytic properties of 3% Y-TiO2-H2 with pure TiO2, 3% Y-TiO2, and TiO2-H2, the synergistic effect of Y doping and reduction of TiO2 was obtained. All samples show the single anatase phase, and no diffraction peak shift is observed. Compared with single-doped TiO2 and single-reduced TiO2, 3% Y-TiO2-H2 exhibits the best photocatalytic performance for the degradation of RhB, which can be totally degraded in 20 min. The improvement of photocatalytic performance was attributed to the synergistic effect of Y doping and reduction treatment. Y doping broadened the range of light absorption and reduced the charge recombination rates, and the reduction treatment caused TiO2 to be enveloped by disordered shells. The remarkable feature of reduced TiO2 by H2 is its disordered shell filled with a limited amount of oxygen vacancies (OVs) or Ti3+, which significantly reduces the Eg of TiO2 and remarkably increases the absorption of visible light. The synergistic effect of Y doping, Ti3+ species, and OVs play an important role in the improvement of photocatalytic performances. The discovery of this work provides a new perspective for the improvement of other photocatalysts by combining doping and reduction to modify traditional photocatalytic materials and further improve their performance.

7.
Dalton Trans ; 52(7): 1919-1926, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36722790

ABSTRACT

Ingenious morphology design and doping engineering have remarkable effects on enhancing conductivity and reducing volume expansion, which need to be improved by transition metal oxides serving as anode materials for lithium-ion batteries. Herein, S0.15-Fe2O3@C nano-spindles with a hierarchical porous structure are obtained by carbonizing MIL-88B@PDA and subsequent high-temperature S-doping. Kinetic analysis showed that S-doping increases capacitive contribution, enhances charge transfer capability and accelerates Li+ diffusion rate. Therefore, the S0.15-Fe2O3@C electrode exhibits superior lithium storage performance with a remarkable specific capacity of 1014.4 mA h g-1 at 200 mA g-1, ultrahigh rate capability of 513.1 mA h g-1 at 5.0 A g-1, and excellent cycling stability of 842.3 mA h g-1 at 1.0 A g-1 after 500 cycles. Moreover, the size of S0.15-Fe2O3@C particles barely changed after 50 cycles, indicating an extremely low volume expansion, related to the carbon shell, fine Fe2O3 nanoparticles, abundant voids inside, and improved kinetics. This strategy can be applied to other metal oxides for synthesizing anodes with high-rate capability and low volume expansion.

8.
Soft Robot ; 10(4): 713-723, 2023 08.
Article in English | MEDLINE | ID: mdl-36779989

ABSTRACT

The majority of sprawling-posture quadrupedal vertebrates, such as geckos and lizards, adopt a cyclical lateral swing pattern of their trunk that is coordinated with limb movements to provide extraordinary flexibility and mobility. Inspired by the gecko's locomotory gait and posture, a gecko-like robot with a flexible spine driven by shape memory alloy (SMA) springs was proposed in this work. The static parameters of the SMA spring were experimentally measured, and the flexible spine driven by SMA springs can be deflected bidirectionally. A kinematic model of the spine mechanism was established, and the mathematical relationship between the thermodynamic behavior of the SMA springs and spinal deflection was systematically analyzed. When a gecko trots with a lateral swing pattern of its trunk, the body and the spine show a standing wave shape and a single-peak C-type curve, respectively. The lateral spine deflection and trotting gait were combined in a collaborative model of a flexible spine and limbs to describe in detail the specific relationships between leg joint variables and spine deflection angle. Planar motion tests of a prototype robot were also conducted by using four high-speed cameras to record the trajectory of each point of the body, which verified the proposed model. From the acquired results, it was demonstrated that, compared with a rigid body, a robot with a flexible spine has a longer stride length, higher speed, and a greatly reduced turning radius.


Subject(s)
Lizards , Robotics , Animals , Shape Memory Alloys , Locomotion , Spine
9.
Am J Transl Res ; 14(11): 7670-7688, 2022.
Article in English | MEDLINE | ID: mdl-36505342

ABSTRACT

OBJECTIVE: Microtubule actin cross-linking factor 1 (MACF1) mutations are known to play an important role in the progression of various cancers. However, its role in breast cancer remains to be determined. In this study, we investigated how MACF1 mutations may play a role in breast cancer development. METHODS: The gene-expression profile data of patients with breast cancer were obtained from The Cancer Genome Atlas (TCGA)-Breast cancer cohort. We estimated the influence of MACF1 mutations on patient clinical prognosis using the Kaplan-Meier method. Further, patients with MACF1-mutant (MACF1-MT) and MACF1-wild-type (MACF1-WT) were compared to identify the differentially expressed genes (DEGs). We also performed functional enrichment analyses, constructed protein-protein interaction (PPI) and competing endogenous RNA (ceRNA) networks, and investigated the correlation between MACF1 mutations and immune-cell infiltration. To explore the prognostic value of MACF1 mutations, a nomogram was developed based on MACF1 mutations and other clinicopathological parameters. RESULTS: Patients with MACF1-MT had a worse prognosis and higher tumor mutation burden score (P < 0.05) than patients with MACF1-WT. MACF1 mutations were demonstrated to upregulate the mTOR signaling pathway and alter energy metabolism and tumor immune microenvironment. Thus, MACF1 mutations might affect immunogenicity and result in a lower response to immunotherapy. By analyzing the Genomics of Drug Sensitivity in Cancer (GDSC), the sensitivity of breast cancer cells to 13 drugs was found to be significantly enhanced by MACF1 mutations. The prognostic model was verified in predicting the outcome of breast cancer patients. CONCLUSION: MACF1 mutations might be a potential prognostic biomarker and a therapeutic target for breast cancer.

10.
Membranes (Basel) ; 12(9)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36135917

ABSTRACT

The porous aerostatic bearing is a new supporting structure that is widely used in precision and ultraprecision engineering and the aerospace and other fields. The aerostatic bearing has a good bearing capacity and static stiffness. In this work, the numerical and experimental research on the static characteristics of an aerostatic bearing based on a porous SiC ceramic membrane is presented. The porous ceramic membrane prepared by reactive sintering, with a porosity of 25.8% and a pore size of 20.55 µm, was used as the restrictor to fabricate the aerostatic bearing. It was found that the ceramics have good permeability, and the permeability coefficient reached 2.78 × 10-13 m2 using permeability-test experiments. The effects of the gas-supply pressure and permeability coefficient on the static characteristics of the aerostatic bearing based on porous ceramics were analyzed using Fluent simulation calculation. When the gas-supply pressure was 0.5 MPa and the gas-film thickness was 6 µm, the static stiffness of the aerostatic bearing reached a maximum of 20.9 N/µm, while the bearing capacity was 632.5 N. The numerical results of the static characteristics of the aerostatic bearing are highly consistent with the experimental results, which verifies the accuracy of the Fluent simulation, and provides convenience for studying the static characteristics of aerostatic bearings.

11.
Membranes (Basel) ; 12(4)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35448359

ABSTRACT

The single-channel Al2O3-based porous ceramic membrane tubes (PCMT) were prepared with different grain size of Al2O3 powders by extrusion molding process, combing the traditional solid-phase sintering method. The effects of raw grain size and sintering temperature on the microstructure, phase structure, density, and porosity were investigated. The results revealed that with further increase in sintering temperature, the density of porous ceramics increases, while the porosity decreases, and the pore size decreases slightly. The pore size and porosity of porous ceramics increase with the increase in raw grain size, while the density decreases. Future, in order to study the water filtration of PCMT, the effect of porosity on the pressure distribution and flow velocity different cross-sectional areas with constant feed mass flow was analyzed using Fluent 19.0. It was found that an increase in the porosity from 30% to 45% with constant feed mass flow influenced transmembrane pressure, that varied from 216.06 kPa to 42.28 kPa, while the velocity change at the outlet was not obvious. Besides, it was observed that the surface pressure is almost constant along the radial direction of the pipe, and the velocity of water in the PCMT is increasing with the decreasing of distance to the outlet. It was also verified that the porosity being 39.64%, caused transmembrane pressure reaching to 77.83 kPa and maximum velocity of 2.301 m/s. These simulation and experimental results showed that the PCMT have good potential for water filtration.

12.
ACS Appl Mater Interfaces ; 14(5): 7052-7062, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35080848

ABSTRACT

Dielectric energy storage devices with high power density show great potential in applications of smart grids, electrical vehicles, pulsed power weapons, and so on. However, their limited recoverable energy density badly restricts their utilization and harms the miniaturization, portability, and integration of electronics. Herein, equivalent amounts of Bi2O3 and Sc2O3 were introduced to improve the energy storage property of 0.10 wt % MnO2-doped AgNbO3@SiO2 ceramics by simultaneously enhancing the maximum polarization, breakdown strength, and relaxation feature. It is particularly interesting that the AgNbO3-based ceramics with 4 mol % Bi2O3 and Sc2O3 demonstrate the recoverable energy storage density of 5.9 J/cm3 with the energy storage efficiency of 71%, exhibiting 1.9 and 1.4 times enhancement compared to 0.10 wt % MnO2-doped AgNbO3@SiO2 ceramics. In addition, the benign energy storage performance can be maintained at elevated temperatures and frequencies and up to 105 cycling, indicating great potential in advanced high-power applications.

13.
Small Methods ; 5(6): e2100193, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34927913

ABSTRACT

The sluggish Li-ion diffusivity in LiFePO4 , a famous cathode material, relies heavily on the employment of a broad spectrum of modifications to accelerate the slow kinetics, including size and orientation control, coating with electron-conducting layer, aliovalent ion doping, and defect control. These strategies are generally implemented by employing the hydrothermal/solvothermal synthesis, as reflected by the hundreds of publications on hydrothermal/solvothermal synthesis in recent years. However, LiFePO4 is far from the level of controllable preparation, due to the lack of the understanding of the relations between the synthesis condition and the nucleation-and-growth of LiFePO4 . In this paper, the recent progress in controlled hydrothermal/solvothermal synthesis of LiFePO4 is first summarized, before an insight into the relations between the synthesis condition and the nucleation-and-growth of LiFePO4 is obtained. Thereafter, a review over surface decoration, lattice substitution, and defect control is provided. Moreover, new research directions and future trends are also discussed.

14.
Membranes (Basel) ; 11(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34832101

ABSTRACT

Air bearing has been widely applied in ultra-precision machine tools, aerospace and other fields. The restrictor of the porous material is the key component in air bearings, but its performance is limited by the machining accuracy. A combination of optimization design and material modification of the porous alumina ceramic membrane is proposed to improve performance within an air bearing. Porous alumina ceramics were prepared by adding a pore-forming agent and performing solid-phase sintering at 1600 °C for 3 h, using 95-Al2O3 as raw material and polystyrene microspheres with different particle sizes as the pore-forming agent. With 20 wt.% of PS50, the optimum porous alumina ceramic membranes achieved a density of 3.2 g/cm3, a porosity of 11.8% and a bending strength of 150.4 MPa. Then, the sintered samples were processed into restrictors with a diameter of 40 mm and a thickness of 5 mm. After the restrictors were bonded to aluminum shells for the air bearing, both experimental and simulation work was carried out to verify the designed air bearing. Simulation results showed that the load capacity increased from 94 N to 523 N when the porosity increased from 5% to 25% at a fixed gas supply pressure of 0.5 MPa and a fixed gas film thickness of 25 µm. When the gas film thickness and porosity were fixed at 100 µm and 11.8%, respectively, the load capacity increased from 8.6 N to 40.8 N with the gas supply pressure having been increased from 0.1 MPa to 0.5 MPa. Both experimental and simulation results successfully demonstrated the stability and effectiveness of the proposed method. The porosity is an important factor for improving the performance of an air bearing, and it can be optimized to enhance the bearing's stability and load capacity.

15.
Nanomaterials (Basel) ; 11(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208155

ABSTRACT

The synthesis of partially substituted silicon hydroxyapatite (Si-HAp) nanopowders was systematically investigated via the microwave-assisted hydrothermal process. The experiments were conducted at 150 °C for 1 h using TMAS (C4H13NO5Si2) as a Si4+ precursor. To improve the Si4+ uptake in the hexagonal structure, the Si precursor was supplied above the stoichiometric molar ratio (0.2 M). The concentration of the TMAS aqueous solutions used varied between 0.3 and 1.8 M, corresponding to saturation levels of 1.5-9.0-fold. Rietveld refinement analyses indicated that Si incorporation occurred in the HAp lattice by replacing phosphate groups (PO43-) with the silicate (SiO4-) group. FT-IR and XPS analyses also confirmed the gradual uptake of SiO4- units in the HAp, as the saturation of Si4+ reached 1.8 M. TEM observations confirmed that Si-HAp agglomerates had a high crystallinity and are constituted by tiny rod-shaped particles with single-crystal habit. Furthermore, a reduction in the particle growth process took place by increasing the Si4+ excess content up to 1.8 M, and the excess of Si4+ triggered the fine rod-shaped particles self-assembly to form agglomerates. The agglomerate size that occurred with intermediate (0.99 mol%) and large (12.16 mol%) Si contents varied between 233.1 and 315.1 nm, respectively. The excess of Si in the hydrothermal medium might trigger the formation of the Si-HAp agglomerates prepared under fast kinetic reaction conditions assisted by the microwave heating. Consequently, the use of microwave heating-assisted hydrothermal conditions has delivered high processing efficiency to crystallize Si-HAp with a broad content of Si4+.

16.
Nano Lett ; 21(12): 5091-5097, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34061545

ABSTRACT

Forming olivine-structured Li(Mn,Fe)PO4 solid solution is theoretically a feasible way to improve the energy density of the solid solutions for lithium ion batteries. However, the Jahn-Teller active Mn3+ in the solid solution restricts their energy density and rate performance. Here, as demonstrated by operando X-ray diffraction, we show that equimolar LiMn0.5Fe0.5PO4 solid solution nanocrystals undergo a single-phase transition during the whole (de)lithiation process, with a feature of zero lithium miscibility gap, which endows the nanocrystals with excellent electrochemical properties. Specifically, the energy density of LiMn0.5Fe0.5PO4 reaches 625 Wh kg-1, which is 16% higher than that of LiFePO4. Moreover, the high-performance LiMn0.5Fe0.5PO4 nanocrystals are prepared by a microwave-assisted hydrothermal synthesis in pure water.

17.
Nanomaterials (Basel) ; 11(2)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669535

ABSTRACT

Eu(OH)3 with various shape-controlled morphologies and size, such as plate, rod, tube, prism and nanoparticles was successfully synthesized through simple hydrothermal reactions. The products were characterized by XRD (X-Ray Powder Diffraction), FE-SEM (Field Emission- Scanning Electron Microscopy) and TG (Thermogravimetry). The influence of the initial pH value of the starting solution and reaction temperature on the crystalline phase and morphology of the hydrothermal products was investigated. A possible formation process to control morphologies and size of europium products by changing the hydrothermal temperature and initial pH value of the starting solution was proposed.

18.
ACS Appl Mater Interfaces ; 13(10): 11958-11967, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33656866

ABSTRACT

The need for safe storage systems with a high energy density has increased the interest in high-voltage solid-state Li-metal batteries (LMBs). Solid-state electrolytes, as a key material for LMBs, must be stable against both high-voltage cathodes and Li anodes. However, the weak interfacial contact between the electrolytes and electrodes poses challenges in the practical applications of LMBs. In this study, a double-layered solid composite electrolyte (DLSCE) was synthesized by introducing an antioxidative poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)-10 wt % Li1.3Al0.3Ti1.7(PO4)3 (LATP) to the cathode interface, whereas a lithium-friendly poly(oxyethylene) (PEO)-5 wt % LATP was made to come into contact with Li metal. Owing to the heterogeneous double-layered structure of the DLSCE, a high ionic transfer number (0.43), high ionic conductivity (1.49 × 10-4 S/cm), and a wide redox window (4.82 V) were obtained at ambient temperature. Moreover, the DLSCE showed excellent Li-metal stability, thereby enabling the Li-Li symmetric cells to stably run for over 600 h at 0.2 mA/cm2 with effective lithium dendrite inhibition. When paired with a high-voltage LiNi1/3Co1/3Mn1/3O2 cathode, the Li/DLSCE/NCM111 cell exhibited excellent electrochemical performance: long-term cyclability with 85% capacity retention could be conducted at 0.2C after 100 cycles corresponding to 100% Coulombic efficiencies.

19.
RSC Adv ; 11(25): 15177-15183, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-35424036

ABSTRACT

Polymer-based dielectrics have been attracted much attention to flexible energy storage devices due to their rapid charge-discharge rate, flexibility, lightness and compactness. Nevertheless, the energy storage performance of these dielectric polymers was limited by the weak dielectric breakdown properties. Crosslinked structure has been proven efficient to enhance breakdown strength (E b) and charge-discharge efficiency (η) of polymer film capacitors. However, crosslinked networks usually lead to low electric displacement of dielectric capacitors, which greatly restrict their energy storage density (U d). In this work, we present a tri-layered composite via layer-by-layer casting technology, where crosslinked polyvinylidene fluoride (c-PVDF) was used as the inter-layer to offer high breakdown strength, and the outer ternary fluoropolymer layers with high dielectric constant could provide high electric displacement. The optimal tri-layered composites exhibit an ultrahigh discharge energy density of 18.3 J cm-3 and a discharge efficiency of 60.6% at 550 kV mm-1. This energy density is much higher than that of the PVDF terpolymer and commercially biaxially oriented polypropylene (BOPP, 1-2 J cm-3). The simulation results prove that the enhanced energy density originates from the effectively depressed charge transport in crosslinked structure at high applied electric field. Moreover, this work provides a feasible method for developing flexible all-organic high-energy-density composites for polymer capacitors.

20.
Oncol Lett ; 17(3): 3457-3465, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30867784

ABSTRACT

Milk fat globule-EGF factor 8 (MFG-E8) has been demonstrated to be associated with the progression and metastasis of breast cancer, although the underlying mechanisms remain undefined. The aim of the present study was to explore the role of MFG-E8 in human breast cancer and examine the underlying molecular mechanisms. Reverse transcription-quantitative polymerase chain reaction analysis was used to evaluate the expression levels of MFG-E8 in human breast carcinoma cell lines. An MFG-E8 small interfering RNA lentiviral vector was constructed and transfected into MDA-MB-231 cells. The results indicated that the in vitro silencing of MFG-E8 significantly inhibited the viability, invasion and migration of breast cancer cells. By using a flow cytometric approach, the knockdown of MFG-E8 was revealed to significantly induce cell cycle arrest at the G2/M phase and cell apoptosis. Furthermore, the downregulation of MFG-E8 induced the activation of apoptosis-associated proteins, and inhibited the expression of matrix metalloproteinase and epithelial-mesenchymal transition-associated proteins. Collectively, the results of the present study emphasize the importance of MFG-E8 deregulation in mammary carcinogenesis and its potential use as a biomarker for the diagnosis of breast carcinomas.

SELECTION OF CITATIONS
SEARCH DETAIL
...