Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Regen Ther ; 26: 132-144, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872979

ABSTRACT

Compared to bioactive glass 45S5, bioactive glass 1393 has shown greater potential in activating tissue cells and promoting angiogenesis for bone repair. Nevertheless, the effect of bioactive glass 1393 in the context of wound healing remains extensively unexplored, and its mechanism in wound healing remains unclear. Considering that angiogenesis is a critical stage in wound healing, we hypothesize that bioactive glass 1393 may facilitate wound healing through the stimulation of angiogenesis. To validate this hypothesis and further explore the mechanisms underlying its pro-angiogenic effects, we investigated the impact of bioactive glass 1393 on wound healing angiogenesis through both in vivo and in vitro studies. The research demonstrated that bioactive glass 1393 accelerated wound healing by promoting the formation of granulation, deposition of collagen, and angiogenesis. The results of Western blot analysis and immunofluorescence staining revealed that bioactive glass 1393 up-regulated the expression of angiogenesis-related factors. Additionally, bioactive glass 1393 inhibited the expression of ROS and P53 to promote angiogenesis. Furthermore, bioactive glass 1393 stimulated angiogenesis through the P53 signaling pathway, as evidenced by P53 activation assays. Collectively, these findings indicate that bioactive glass 1393 accelerates wound healing by promoting angiogenesis via the ROS/P53/MMP9 signaling pathway.

2.
Int J Mol Sci ; 25(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38203792

ABSTRACT

Peanut Fusarium rot, which is widely observed in the main peanut-producing areas in China, has become a significant factor that has limited the yield and quality in recent years. It is highly urgent and significant to clarify the regulatory mechanism of peanuts in response to Fusarium oxysporum. In this study, transcriptome and proteome profiling were combined to provide new insights into the molecular mechanisms of peanut stems after F. oxysporums infection. A total of 3746 differentially expressed genes (DEGs) and 305 differentially expressed proteins (DEPs) were screened. The upregulated DEGs and DEPs were primarily enriched in flavonoid biosynthesis, circadian rhythm-plant, and plant-pathogen interaction pathways. Then, qRT-PCR analysis revealed that the expression levels of phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI), and cinnamic acid-4-hydroxylase (C4H) genes increased after F. oxysporums infection. Moreover, the expressions of these genes varied in different peanut tissues. All the results revealed that many metabolic pathways in peanut were activated by improving key gene expressions and the contents of key enzymes, which play critical roles in preventing fungi infection. Importantly, this research provides the foundation of biological and chemical analysis for peanut disease resistance mechanisms.


Subject(s)
Arachis , Fusarium , Arachis/genetics , Proteomics , Gene Expression Profiling
3.
Toxins (Basel) ; 16(1)2024 01 19.
Article in English | MEDLINE | ID: mdl-38276533

ABSTRACT

(1) Background: Safety problems associated with aflatoxin B1 (AFB1) contamination have always been a major threat to human health. Removing AFB1 through adsorption is considered an attractive remediation technique. (2) Methods: To produce an adsorbent with a high AFB1 adsorption efficiency, a magnetic reduced graphene oxide composite (Fe3O4@rGO) was synthesized using one-step hydrothermal fabrication. Then, the adsorbent was characterized using a series of techniques, such as SEM, TEM, XRD, FT-IR, VSM, and nitrogen adsorption-desorption analysis. Finally, the effects of this nanocomposite on the nutritional components of treated foods, such as vegetable oil and peanut milk, were also examined. (3) Results: The optimal synthesis conditions for Fe3O4@rGO were determined to be 200 °C for 6 h. The synthesis temperature significantly affected the adsorption properties of the prepared material due to its effect on the layered structure of graphene and the loading of Fe3O4 nanoparticles. The results of various characterizations illustrated that the surface of Fe3O4@rGO had a two-dimensional layered nanostructure with many folds and that Fe3O4 nanoparticles were distributed uniformly on the surface of the composite material. Moreover, the results of isotherm, kinetic, and thermodynamic analyses indicated that the adsorption of AFB1 by Fe3O4@rGO conformed to the Langmuir model, with a maximum adsorption capacity of 82.64 mg·g-1; the rapid and efficient adsorption of AFB1 occurred mainly through chemical adsorption via a spontaneous endothermic process. When applied to treat vegetable oil and peanut milk, the prepared material minimized the loss of nutrients and thus preserved food quality. (4) Conclusions: The above findings reveal a promising adsorbent, Fe3O4@rGO, with favorable properties for AFB1 adsorption and potential for food safety applications.


Subject(s)
Graphite , Nanocomposites , Water Pollutants, Chemical , Humans , Graphite/chemistry , Aflatoxin B1/chemistry , Spectroscopy, Fourier Transform Infrared , Adsorption , Plant Oils , Magnetic Phenomena , Nanocomposites/chemistry , Kinetics
4.
Chem Biodivers ; 21(2): e202301781, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38146649

ABSTRACT

Polysaccharide from Asarum sieboldii Miq (ASP) was extracted and five phosphorylation polysaccharides with different degree of substitution were obtained, namely ASPP1, ASPP2, ASPP3, ASPP4, and ASPP5 (ASPPs). The physical and chemical structure and biological activities were studied. The results suggested that the carbohydrate and protein content were reduced while uronic acid was increased after phosphorylation modification. The molecular weight of ASPPs was significantly lower than that of ASP. ASPPs were acidic heteropolysaccharides mainly composed of galacturonic acid, galactose, glucose, fructose, and arabinose. The UV-vis spectrum indicated that the polysaccharides did not contain nucleic acid or protein after modification. The Fourier transform infrared spectrum demonstrated that ASPPs contained characteristic absorption peaks of P=O and P-O-C near 1270 and 980 cm-1 . ASPPs presented a triple helix conformation, but it was not presented in ASP. The scanning electron microscopy analysis showed that the surface topography and particle structure of ASP were different after modification. Compared with ASP, ASPPs enhanced the activity to scavenge DPPH and ABTS free radicals and possessed more protective ability to DNA oxidation caused by OH⋅, GS⋅, and AAPH free radicals. These results suggest that chemical modification is beneficial for the exploitation and utilization of natural polysaccharides.


Subject(s)
Antioxidants , Asarum , Antioxidants/pharmacology , Antioxidants/chemistry , Phosphorylation , Polysaccharides/pharmacology , Polysaccharides/chemistry , Free Radicals , Spectroscopy, Fourier Transform Infrared
5.
Aging (Albany NY) ; 15(23): 13961-13979, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38078882

ABSTRACT

Cathepsin V (CTSV) is a cysteine cathepsin protease that plays a crucial role in extracellular matrix degradation. CTSV is correlated with poor prognosis in various cancers, but the underlying mechanism remains elusive. Here, we observed that CSTV is upregulated in lung cancer and is a poor prognosis factor for lung cancer. CTSV acts as a driver in the metastasis of lung cancer both in vitro and in vivo. CTSV promotes lung cancer metastasis by downregulating adhesion molecules, including fibronectin, E-cadherin, and N-cadherin. Our data revealed that CTSV functions by mediating the fragmentation of fibronectin, E-cadherin, and N-cadherin in cleavage, remodeling the extracellular matrix (ECM). The rationally designed antibody targeting CTSV blocks its cleaving ability towards fibronectin, E-cadherin, and N-cadherin, suppressing migration and invasion. Furthermore, we found that CTSV expression is negatively correlated with immune cell infiltration and immune scores and inhibits T cell activity. Targeting CTSV with specific antibodies effectively suppressed lung cancer metastasis in a mouse model. Our study demonstrates the critical role of CTSV in the immunity and metastasis of lung cancer, suggesting that the CTSV-targeting approach is a promising strategy for lung cancer.


Subject(s)
Lung Neoplasms , Animals , Mice , Fibronectins , Cathepsins/metabolism , Cell Adhesion Molecules , Cadherins/metabolism , Cell Movement , Cell Line, Tumor
6.
Antivir Ther ; 28(5): 13596535231207499, 2023 10.
Article in English | MEDLINE | ID: mdl-37846668

ABSTRACT

BACKGROUND: Avian infectious bronchitis virus (IBV), a coronavirus, causes a huge economic loss to the poultry industry. Andrographolide (APL) is a compound with a variety of pharmacological properties, including antiviral and anti-inflammatory effects. In this study, APL was evaluated for antiviral activity by its anti-apoptotic, anti-pyroptosis, and anti-inflammatory effects. METHODS: The cytotoxicity of APL was determined by the MTT method. We investigated the therapeutic impact of APL on IBV through a plate assay. We explored that APL inhibited IBV-induced apoptosis, pyroptosis, and inflammation in HD11 cells by RT-qPCR and immunofluorescence. Also, it was verified in the clinical chicken embryo trial. RESULTS: We found that APL down-regulated apoptosis-related genes Caspase-3, Caspase-8, Caspase-9, Bax, Bid, and Bak, down-regulated pyroptosis gene DFNA5, and down-regulated inflammation-related genes (NF-κB, NLRP3, iNOS, TNF-α, and IL-1ß). In addition, APL reduced the reactive oxygen species (ROS) production in cells. Finally, clinical trials showed that APL inhibited IBV-induced apoptosis, pyroptosis, and inflammation, as well as reduced the mortality and malformation of chicken embryos. CONCLUSIONS: In this study, we delved into the antiviral properties of APL in the context of chicken macrophage (HD11) infection with IBV. Our findings confirm that andrographolide effectively inhibits apoptosis, pyroptosis, and inflammation by IBV infection. Furthermore, this inhibition was verified on chicken embryos in vivo. This inhibition suggests a substantial potential for APL as a therapeutic agent to mitigate the harmful effects of IBV on host cells.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Animals , Chick Embryo , Pyroptosis , Chickens , Apoptosis/genetics , Inflammation/drug therapy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary
7.
Front Mol Biosci ; 10: 1232803, 2023.
Article in English | MEDLINE | ID: mdl-37426422

ABSTRACT

[This corrects the article DOI: 10.3389/fmolb.2023.1172100.].

8.
Int J Antimicrob Agents ; 62(3): 106923, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37433388

ABSTRACT

OBJECTIVES: Escherichia coli is an important pathogen responsible for numerous cases of diarrhoea worldwide. The bioreductive agent tirapazamine (TPZ), which was clinically used to treat various types of cancers, has obvious antibacterial activity against E. coli strains. In the present study, we aimed to evaluate the protective therapeutic effects of TPZ in E. coli-infected mice and provide insights into its antimicrobial action mechanism. METHODS: The MIC and MBC tests, drug sensitivity test, crystal violet assay and proteomic analysis were used to detect the in vitro antibacterial activity of TPZ. The clinical symptoms of infected mice, tissue bacteria load, histopathological features and gut microbiota changes were regarded as indicators to evaluation the efficacy of TPZ in vivo. RESULTS: Interestingly, TPZ-induced the reversal of drug resistance in E. coli by regulating the expression of resistance-related genes, which may have an auxiliary role in the clinical treatment of drug-resistant bacterial infections. More importantly, the proteomics analysis showed that TPZ upregulated 53 proteins and downregulated 47 proteins in E. coli. Among these, the bacterial defence response-related proteins colicin M and colicin B, SOS response-related proteins RecA, UvrABC system protein A, and Holliday junction ATP-dependent DNA helicase RuvB were all significantly upregulated. The quorum sensing-related protein glutamate decarboxylase, ABC transporter-related protein glycerol-3-phosphate transporter polar-binding protein, and ABC transporter polar-binding protein YtfQ were significantly downregulated. The oxidoreductase activity-related proteins pyridine nucleotide-disulfide oxidoreductase, glutaredoxin 2 (Grx2), NAD(+)-dependent aldehyde reductase, and acetaldehyde dehydrogenase, which participate in the elimination of harmful oxygen free radicals in the oxidation-reduction process pathway, were also significantly downregulated. Moreover, TPZ improved the survival rate of infected mice; significantly reduced the bacteria load in the liver, spleen, and colon; and alleviated E. coli-associated pathological damages. The gut microbiota also changed in TPZ-treated mice, and these genera were considerably differentiated: Candidatus Arthromitus, Eubacterium coprostanoligenes group, Prevotellaceae UCG-001, Actinospica, and Bifidobacterium. CONCLUSIONS: TPZ may represent an effective and promising lead molecule for the development of antimicrobial agents for the treatment of E. coli infections.


Subject(s)
Antineoplastic Agents , Escherichia coli , Animals , Mice , Tirapazamine , Antineoplastic Agents/pharmacology , Triazines/pharmacology , Triazines/therapeutic use , Proteomics , Oxidoreductases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
9.
Pharmacol Res ; 193: 106818, 2023 07.
Article in English | MEDLINE | ID: mdl-37315823

ABSTRACT

Lung cancer is the most diagnosed malignant cancer and the leading cause of cancer-related deaths worldwide, with advanced stage and metastasis being a major issue. The mechanism leading to metastasis is not yet understood. Here, we found that KRT16 is upregulated in metastatic lung cancer tissues and correlated with poor overall survival. Knockdown of KRT16 inhibits metastasis of lung cancer both in vitro and in vivo. Mechanistically, KRT16 interacts with vimentin, and depletion of KRT16 leads to downregulation of vimentin. KRT16 acquired its oncogenic ability by stabilizing vimentin, and vimentin is required for KRT16-driven metastasis. FBXO21 mediates the polyubiquitination and degradation of KRT16, and vimentin inhibits KRT16 ubiquitination and degradation by impairing its interaction with FBXO21. Significantly, IL-15 inhibits metastasis of lung cancer in a mouse model through upregulation of FBXO21, and the level of IL-15 in circulating serum was significantly higher in nonmetastatic lung cancer patients than in metastatic patients. Our findings indicate that targeting the FBXO21/KRT16/vimentin axis may benefit lung cancer patients with metastasis.


Subject(s)
Interleukin-15 , Lung Neoplasms , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Interleukin-15/metabolism , Lung Neoplasms/metabolism , Neoplasm Metastasis , Signal Transduction , Vimentin/metabolism , Humans
10.
Front Mol Biosci ; 10: 1172100, 2023.
Article in English | MEDLINE | ID: mdl-37234918

ABSTRACT

Frequent injections at high concentrations are often required for many therapeutic proteins due to their short in vivo half-life, which usually leads to unsatisfactory therapeutic outcomes, adverse side effects, high cost, and poor patient compliance. Herein we report a supramolecular strategy, self-assembling and pH regulated fusion protein to extend the in vivo half-life and tumor targeting ability of a therapeutically important protein trichosanthin (TCS). TCS was genetically fused to the N-terminus of a self-assembling protein, Sup35p prion domain (Sup35), to form a fusion protein of TCS-Sup35 that self-assembled into uniform spherical TCS-Sup35 nanoparticles (TCS-Sup35 NP) rather than classic nanofibrils. Importantly, due to the pH response ability, TCS-Sup35 NP well retained the bioactivity of TCS and possessed a 21.5-fold longer in vivo half-life than native TCS in a mouse model. As a result, in a tumor-bearing mouse model, TCS-Sup35 NP exhibited significantly improved tumor accumulation and antitumor activity without detectable systemic toxicity as compared with native TCS. These findings suggest that self-assembling and pH responding protein fusion may provide a new, simple, general, and effective solution to remarkably improve the pharmacological performance of therapeutic proteins with short circulation half-lives.

11.
Eur J Pharm Sci ; 187: 106466, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37201872

ABSTRACT

To overcome the metabolic instability of cordycepin (adenosine deaminase (ADA) metabolic deamination and plasma degradation) and obtain better bioactivity, three novel kinds of cordycepin derivatives 1a-1c containing unsaturated fatty acids including linoleic acid, arachidonic acid and α-linolenic acid, respectively, were designed and synthesized. In terms of antibacterial activity, the synthesized compounds 1a and 1c showed enhanced activity than cordycepin in the tested bacterial strains. 1a-1c also exhibited enhanced antitumor activity against four cancer cell lines (human cervical cancer cell line HeLa, human non-small cell lung cancer cell line A549, human breast cancer cell line MCF-7, and human hepatoma cell line SMMC-7721) compared with cordycepin. Notably, 1a and 1b showed better antitumor activity even compared with positive control 5-Fluorouracil (5-FU) in HeLa, MCF-7 and SMMC-7721. The cell cycle assay indicated that when compared with cordycepin, 1a and 1b could significantly inhibit the cell propagation trapped in S and G2/M phases and increase the percentage of cells trapped in G0/G1 in HeLa and A549, which might provide a synergistic antitumor mechanism evidence different from cordycepin. Last but not the least, 1a and 1b displayed improved stability both in ADA solution and mouse plasma compared with cordycepin and 1a owns a solubility of 130 µg/mL in PBS. These results offer a novel insight into the primary structure and activity relationship of how the unsaturated fatty acid chain could affect the bioactivity of cordycepin, which also represents a series of cordycepin analogs with obviously improved bioactivity and enhanced stability, therefore promoting its druggable enhancement.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Cell Line, Tumor , Fluorouracil/pharmacology , Anti-Bacterial Agents/pharmacology , Fatty Acids, Unsaturated/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Apoptosis
12.
Int J Biol Macromol ; 242(Pt 2): 124860, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37187420

ABSTRACT

In this study, polysaccharide from Cortex periplocae (CPP) was modified and three carboxymethylation modification polysaccharides (CPPCs) were obtained, and their physicochemical characteristics and in vitro biological activities were investigated. Based on the ultraviolet-visible (UV-Vis) scan, CPPs (CPP and CPPCs) did not contain nucleic acids or proteins. However, the Fourier transform infrared (FTIR) spectrum showed a new absorption peak around 1731 cm-1. In addition, three absorption peaks near 1606, 1421, and 1326 cm-1 were enhanced after carboxymethylation modification. Based on UV-Vis scan, the maximum absorption wavelength of Congo Red + CPPs exhibited a red-shift compared to Congo Red meant CPPs had a triple helix conformation. Scanning electron microscopy (SEM) indicated that CPPCs exhibited more fragments and non-uniform-sized filiform than CPP. Thermal analysis showed that CPPCs degraded between the temperature 240 °C-350 °C and CPP in the 270 °C-350 °C. In addition, the antioxidant and DNA protecting activities of CPPCs were significantly enhanced compared to CPP. Overall, this study demonstrated the potential applications of CPPs in food and pharmaceutical industries.


Subject(s)
Antioxidants , Free Radical Scavengers , Antioxidants/pharmacology , Antioxidants/chemistry , Free Radical Scavengers/chemistry , Congo Red , DNA , Polysaccharides/pharmacology , Polysaccharides/chemistry , Spectroscopy, Fourier Transform Infrared
13.
Front Microbiol ; 14: 1084205, 2023.
Article in English | MEDLINE | ID: mdl-36876095

ABSTRACT

Escherichia coli cysteine desulfurase (CD), IscS, modifies basal metabolism by transferring sulphur (S) from L-cysteine to numerous cellular pathways, whereas NFS1, a human CD, is active only in the formation of the [Acp]2:[ISD11]2:[NFS1]2 complex. Despite the accumulation of red-coloured IscS in E. coli cells as a result of the deficiency of accessible iron, as revealed in our previous studies, the mechanism of the potential enzymatic reaction remains unclear. In this study, the N-terminus of IscS was fused with the C-terminus of NFS1, which was reported to be almost fully active as IscS and exhibits a pyridoxal 5'-phosphate (PLP) absorption peak at 395 nm. Moreover, SUMO-EH-IscS exhibited significant growth recovery and NADH-dehydrogenase I activity in the iscS mutant cells. Furthermore, through in vitro and in vivo experiments combined with high-performance liquid chromatography and ultra-performance liquid chromatography-tandem mass spectrometry, it was shown that the new absorption peaks of the IscS H104Q, IscS Q183E, IscS K206A, and IscS K206A&C328S variants at 340 and 350 nm may correspond to the enzyme reaction intermediates, Cys-ketimine and Cys-aldimine, respectively. However, after mutation of the conserved active-site residues, additional absorption peaks at 420 and 430 nm were associated with PLP migration in the active-site pocket. Additionally, the corresponding absorption peaks of Cys-quinonoid, Ala-ketimine, and Ala-aldimine intermediates in IscS were 510, 325, and 345 nm, respectively, as determined by site-directed mutagenesis and substrate/product-binding analyses during the CD reaction process. Notably, red IscS formed in vitro by incubating IscS variants (Q183E and K206A) with excess L-alanine and sulphide under aerobic conditions produced an absorption peak similar to the wild-type IscS, at 510 nm. Interestingly, site-directed mutation of IscS with hydrogen bonds to PLP at Asp180 and Gln183 resulted in a loss of enzymatic activity followed by an absorption peak consistent with NFS1 (420 nm). Furthermore, mutations at Asp180 or Lys206 inhibited the reaction of IscS in vitro with L-cysteine (substrate) and L-alanine (product). These results suggest that the conserved active site residues (His104, Asp180, and Gln183) and their hydrogen bond with PLP in the N-terminus of IscS play a key role in determining whether the L-cysteine substrate can enter the active-site pocket and regulate the enzymatic reaction process. Therefore, our findings provide a framework for evaluating the roles of conserved active-site residues, motifs, and domains in CDs.

14.
J Pharm Pharm Sci ; 26: 11235, 2023.
Article in English | MEDLINE | ID: mdl-36942297

ABSTRACT

Purpose: Gastrointestinal perforation (GIP) is a fatal adverse event (AE). The AE of GIP induced by novel antineoplastic agents has attracted attention recently. We aimed to explore the AE signals of GIP related to novel antineoplastic agents comprehensively based on the FDA Adverse Event Reporting System (FAERS). Methods: The FAERS database containing 71 quarters of records was used for analysis. Reporting odds ratio (ROR), information component (IC), and empirical Bayesian geometric mean (EBGM) were utilized to evaluate the signals of GIP associated with novel antineoplastic drugs. Standardization of drug names was by employing MedEx-UIMA software and Python. Data analysis and visualization were performed using MySQL Workbench and R software. Results: After cleaning and handling the data, 5226 GIP cases were identified that were associated with new antineoplastic medications, where these agents were the main suspected contributors. A total of 37 novel antineoplastic drugs were detected with signals of GIP for ROR and IC. Only 22 drugs showed statistically significant signals for EBGM. We found the GIP signals of 22 novel antineoplastic drugs overlapped for the 3 indicators, including anti-vascular endothelial growth factor/vascular endothelial growth factor receptor, anti-endothelial growth factor receptor, immune checkpoint inhibitors, and so on. Conclusion: The potential risk of GIP associated with several novel antineoplastic agents was identified through data mining, which provided valuable information on the safety risks associated with GIP among these drugs. The potential threat of GIP should be recognized and managed properly when using these novel antineoplastic agents.


Subject(s)
Antineoplastic Agents , Drug-Related Side Effects and Adverse Reactions , United States , Humans , Adverse Drug Reaction Reporting Systems , Bayes Theorem , United States Food and Drug Administration , Software , Antineoplastic Agents/adverse effects
15.
Heliyon ; 9(2): e13668, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36852024

ABSTRACT

Chlorantraniliprole (CAP) is an insecticide with low toxicity and high efficiency, which is widely used in agriculture in China. However, its potential ecological risks remain unknown. In this study, we investigated the impact of different CAP concentrations on bacterial and fungal communities in soil based on high-throughput sequencing. The results showed that CAP application had no significant effect on soil bacterial and fungal diversity, but altered the bacterial and fungal community structure. In particular, the soil bacterial and fungal community structure in the low CAP concentration treatment group exhibited large variability. Compared with 0 day, the phylum level of bacteria changed at 115 days, and fungi changed at 175 days, indicating that soil microbial community might have significant correlation with CAP degradation in soil. Correlation analysis between soil properties and microbial communities showed that TN, TP, and NO3-N were three key factors that significantly influenced microbial community structure. These results provide basic data for studying the effects of pesticides on ecosystem and potential remediation strategies of polluted soil.

16.
J Aerosol Med Pulm Drug Deliv ; 36(1): 2-11, 2023 02.
Article in English | MEDLINE | ID: mdl-36695669

ABSTRACT

Background: Acinetobacter baumannii-mediated bacterial pneumonia is a common disease that is harmful to human health. Dipalmitoylphosphatidylcholine (DPPC) is the major lipid component of the pulmonary surfactant (PS) found in the alveolar space; the PS helps to keep surface tension low, which allows for improved oxygen delivery. Resveratrol (RE) is a phytoalexin found in plants that is released in response to injury or infection. The therapeutic effect of Re is limited due to its low solubility and bioavailability. In this study, we report pulmonary delivery of Re-loaded DPPC liposomal large porous microparticles (RDLPMs) for treatment of A. baumannii-induced pneumonia. Methods: Novel RDLPMs were prepared by rotary evaporation and a freeze-drying method in this study. RDLPMs were evaluated by the particle size, electric potential, in vitro release, and particle size distribution. A rat model of A. baumannii-mediated pneumonia was established and used for pharmacodynamic evaluations. Results: The Re-loaded DPPC liposomes (RDLs) consisted of Re/DPPC (1:3, mol/mol) and DPPC/cholesterol (3:1, w/w), with a hydration time of 15 minutes. The RDLs had a high encapsulation efficiency of 69.8% ± 1.6%, a mean size of 191.5 ± 4.5 nm, and a high zeta potential of 12.4 ± 1.5 mV. The RDLPMs were composed of mannitol/large porous microparticles/RDLs (1:4:2, w/w/w) and had a loading efficiency of 2.20% ± 0.24%. The RDLPMs had an aerodynamic diameter (2.73 ± 0.65 µm), a good fluidity (28.30° ± 6.13°), and demonstrated high lung deposition (fine particle fraction = 43.33%). Surprisingly, while penicillin showed better microbial inhibition than the RDLPMs and Re groups in vitro, the RDLPMs were more effective in vivo. Conclusion: The RDLPMs showed good powder properties for pulmonary delivery. The RDLPMs may inhibit the nuclear factor kappa-B pathway and downregulate the expression of cytokines downstream of tumor necrosis factor-α and interleukin-1ß. As well as, RDLPMs demonstrated some antibacterial properties against A. baumannii bacteria. Re, when delivered in RDLPMs as a dry powder inhaler, is a promising substitute for antibiotics in the treatment of A. baumannii pneumonia.


Subject(s)
Acinetobacter baumannii , Pneumonia, Bacterial , Pulmonary Surfactants , Rats , Humans , Animals , Liposomes/therapeutic use , 1,2-Dipalmitoylphosphatidylcholine , Resveratrol/therapeutic use , Porosity , Administration, Inhalation , Anti-Bacterial Agents/pharmacology , Pneumonia, Bacterial/drug therapy , Particle Size
17.
J Environ Sci (China) ; 127: 197-209, 2023 May.
Article in English | MEDLINE | ID: mdl-36522053

ABSTRACT

Tetrachlorobisphenol A (TCBPA), a widely used halogenated flame retardant, is frequently detected in environmental compartments and human samples. However, unknown developmental toxicity and mechanisms limit the entire understanding of its effects. In this study, zebrafish (Danio rerio) embryos were exposed to various concentrations of TCBPA while a combination of transcriptomics, behavioral and biochemical analyzes as well as metabolomics were applied to decipher its toxic effects and the potential mechanisms. We found that TCBPA could interfere with nervous and cardiovascular development through focal adhesion and extracellular matrix-receptor (ECM-receptor) interaction pathways through transcriptomic analysis. Behavioral and biochemical analysis results indicated abnormal swimming behavior of zebrafish larvae. Morphological observations revealed that TCBPA could cause the loss of head blood vessels. Metabolomic analysis showed that arginine-related metabolic pathways were one of the main pathways leading to TCBPA developmental toxicity. Our study demonstrated that by using omics, TCBPA was shown to have neurological and cardiovascular developmental toxicity and the underlying mechanisms were uncovered and major pathways identified.


Subject(s)
Cardiovascular System , Flame Retardants , Water Pollutants, Chemical , Animals , Humans , Zebrafish , Transcriptome , Flame Retardants/toxicity , Larva , Metabolomics , Embryo, Nonmammalian , Water Pollutants, Chemical/pharmacology
18.
Sci Adv ; 8(38): eabq8486, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36149960

ABSTRACT

Primary cilia are specialized cell-surface organelles that mediate sensory perception and, in contrast to motile cilia and flagella, are thought to lack motility function. Here, we show that primary cilia in human and mouse pancreatic islets exhibit movement that is required for glucose-dependent insulin secretion. Islet primary cilia contain motor proteins conserved from those found in classic motile cilia, and their three-dimensional motion is dynein-driven and dependent on adenosine 5'-triphosphate and glucose metabolism. Inhibition of cilia motion blocks beta cell calcium influx and insulin secretion. Human beta cells have enriched ciliary gene expression, and motile cilia genes are altered in type 2 diabetes. Our findings redefine primary cilia as dynamic structures having both sensory and motile function and establish that pancreatic islet cilia movement plays a regulatory role in insulin secretion.


Subject(s)
Cilia , Diabetes Mellitus, Type 2 , Adenosine/metabolism , Animals , Calcium/metabolism , Cilia/chemistry , Dyneins/metabolism , Glucose/metabolism , Humans , Insulin Secretion , Mice
20.
Biochim Biophys Acta Mol Cell Res ; 1869(10): 119307, 2022 10.
Article in English | MEDLINE | ID: mdl-35714932

ABSTRACT

Iron­sulfur (Fe-S) clusters have been shown to play important roles in various cellular physiological process. Iron­sulfur cluster assembly 2 (ISCA2) is a vital component of the [4Fe-4S] cluster assembly machine. Several studies have shown that ISCA2 is highly expressed during erythroid differentiation. However, the role and specific regulatory mechanisms of ISCA2 in erythroid differentiation and erythroid cell growth remain unclear. RNA interference was used to deplete ISCA2 expression in human erythroid leukemia K562 cells. The proliferation, apoptosis, and erythroid differentiation ability of the cells were assessed. We show that knockdown of ISCA2 has profound effects on [4Fe-4S] cluster formation, diminishing mitochondrial respiratory chain complexes, leading to reactive oxygen species (ROS) accumulation and mitochondrial damage, inhibiting cell proliferation. Excessive ROS can inhibit the activity of cytoplasmic aconitase (ACO1) and promote ACO1, a bifunctional protein, to perform its iron-regulating protein 1(IRP1) function, thus inhibiting the expression of 5'-aminolevulinate synthase 2 (ALAS2), which is a key enzyme in heme synthesis. Deficiency of ISCA2 results in the accumulation of iron divalent. In addition, the combination of excessive ferrous iron and ROS may lead to damage of the ACO1 cluster and higher IRP1 function. In brief, ISCA2 deficiency inhibits heme synthesis and erythroid differentiation by double indirect downregulation of ALAS2 expression. We conclude that ISCA2 is essential for normal functioning of mitochondria, and is necessary for erythroid differentiation and cell proliferation.


Subject(s)
Iron Regulatory Protein 1/metabolism , Iron-Sulfur Proteins/metabolism , 5-Aminolevulinate Synthetase/metabolism , Aconitate Hydratase/genetics , Heme/metabolism , Humans , Iron/metabolism , Iron-Sulfur Proteins/genetics , K562 Cells , Reactive Oxygen Species/metabolism , Sulfur/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...