Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(50): 56353-56362, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36511382

ABSTRACT

Discovery of remarkable porous materials for CO2 capture from wet flue gas is of great significance to reduce the CO2 emissions, but elucidating the most critical structure features for boosting CO2 capture capabilities remains a great challenge. Here, machine-learning-assisted Monte Carlo computational screening on 516 experimental covalent organic frameworks (COFs) identifies the superior secondary building units (SBUs) for wet flue gas separation using COFs, which are tetraphenylporphyrin units for boosting CO2 adsorption uptake and functional groups for boosting CO2/N2 selectivity. Accordingly, 1233 COFs are assembled using the identified superior SBUs. Density functional theory calculation analysis on frontier orbitals, electrostatic potential, and binding energy reveals the influencing mechanism of the SBUs on the wet flue gas separation performance. The "electron-donating-induced vdW interaction" effect is discovered to construct the better-performing COFs, which can achieve high CO2 uptake of 4.4 mmol·g-1 with CO2/N2 selectivity of 104.8. Meanwhile, the "electron-withdrawing-induced vdW + electrostatic coupling interaction" effect is unearthed to construct the better-performing COFs with superior CO2/N2 selectivity, which can reach 277.6 with CO2 uptake of 2.2 mmol·g-1; in this case, H2O plays a positive contribution in improving CO2/N2 selectivity. This work provides useful guidelines for designing optimized two-dimensional-COF adsorbents for wet flue gas separation.

2.
Sci Total Environ ; 827: 154045, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35217050

ABSTRACT

The vertical distributions of formaldehyde (HCHO) and nitrogen dioxide (NO2) and their indicative roles in ozone (O3) sensitivity are important for designing O3 mitigation strategies. Using hyperspectral remote sensing observations, tropospheric vertical profiles of HCHO, NO2, and aerosol extinction were investigated in Guangzhou, China from July to September 2019. On both O3 non-exceedance and polluted days, the HCHO and aerosol vertical profiles exhibited similar Gaussian shapes, but the NO2 profile exhibited an exponential decreasing shape. HCHO and aerosol were especially sensitive to O3 pollution, with higher values generally occurring at approximately noon and late afternoon at higher altitudes. We attempted to study the diurnal evolution of O3 sensitivity at different altitudes based on the HCHO to NO2 ratio (FNR) vertical profile. The FNR thresholds marking the transition regime (2.5 < FNR < 4.0) were derived from the relationship between the increase in O3 (∆O3) and FNR. Our results showed that O3 sensitivity tends to be VOC-limited both at lower (below approximately 0.4 km) and higher (above approximately 1.8 km) altitudes throughout the daytime. In the middle altitudes, the photochemical formation of O3 was mainly in the transition/NOx-limited regime in the morning and afternoon but in the VOC-limited regime at noontime. The relationship between TROPOMI column FNR and near-surface O3 sensitivity was further investigated. Compared with the MAX-DOAS near-surface FNR, slightly higher values of column FNR would increase the number of days classified as transition regimes, which was mainly caused by the inhomogeneous vertical distribution of HCHO and NO2 in the lower troposphere. This study provides an improved understanding of vertical variability and diurnal evolution of O3 formation sensitivity.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring/methods , Nitrogen Dioxide/analysis , Ozone/analysis , Photochemical Processes , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL