Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Arthritis Res Ther ; 26(1): 101, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745331

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the role of macrophage polarization in the pathogenesis of primary Sjogren's syndrome (pSS). METHODS: Peripheral venous blood samples were collected from 30 patients with pSS and 30 healthy controls. Minor salivary gland samples were abtainted from 10 of these patients and 10 non-pSS controls whose minor salivary gland didn't fulfill the classification criteria for pSS. Enzyme-linked immuno sorbent assay was used to examine the serum concentration of M1/M2 macrophage related cytokines (TNF-a, IL-6, IL-23, IL-4, IL-10 and TGF-ß). Flow cytometry was used to examine the numbers of CD86+ M1 macrophages and CD206+ M2 macrophages in peripheral blood mononuclear cells (PBMCs). Immunofluorescence was used to test the infiltration of macrophages in minor salivary glands. RESULTS: This study observed a significant increase in pSS patients both in the numbers of M1 macrophages in peripheral blood and serum levels of M1-related pro-inflammatory cytokines (IL-6, IL-23 and TNF-α). Conversely, M2 macrophages were downregulated in the peripheral blood of pSS patients. Similarly, in the minor salivary glands of pSS patients, the expression of M1 macrophages was increased, and that of M2 macrophages was decreased. Furthermore, a significantly positive correlation was found between the proportions of M1 macrophages in PBMCs and serum levels of IgG and RF. CONCLUSIONS: This study reveals the presence of an significant imbalance in M1/M2 macrophages in pSS patients. The M1 polarization of macrophages may play an central role in the pathogenesis of pSS.


Subject(s)
Cytokines , Macrophages , Sjogren's Syndrome , Sjogren's Syndrome/immunology , Sjogren's Syndrome/blood , Sjogren's Syndrome/pathology , Humans , Macrophages/immunology , Macrophages/metabolism , Female , Middle Aged , Cytokines/blood , Cytokines/metabolism , Male , Adult , Flow Cytometry , Aged , Cell Polarity , Enzyme-Linked Immunosorbent Assay , Macrophage Activation/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology
2.
ACS Synth Biol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607270

ABSTRACT

Ectoine is a compatible solute that functions as a cell protector from various stresses, protecting cells and stabilizing biomolecules, and is widely used in medicine, cosmetics, and biotechnology. Microbial fermentation has been widely used for the large-scale production of ectoine, and a number of fermentation strategies have been developed to increase the ectoine yield, reduce production costs, and simplify the production process. Here, Corynebacterium glutamicum was engineered for ectoine production by heterologous expression of the ectoine biosynthesis operon ectBAC gene from Halomonas elongata, and a series of genetic modifications were implemented. This included introducing the de3 gene from Escherichia coli BL21 (DE3) to express the T7 promoter, eliminating the lysine transporter protein lysE to limit lysine production, and performing a targeted mutation lysCS301Y on aspartate kinase to alleviate feedback inhibition of lysine. The new engineered strain Ect10 obtained an ectoine titer of 115.87 g/L in an optimized fed-batch fermentation, representing the highest ectoine production level in C. glutamicum and achieving the efficient production of ectoine in a low-salt environment.

3.
J Agric Food Chem ; 72(4): 2277-2286, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38235660

ABSTRACT

Enzymatic kinetic resolution is a promising way to produce l-menthol. However, the properties of the reported biocatalysts are still unsatisfactory and far from being ready for industrial application. Herein, a para-nitrobenzylesterase (pnbA) gene from Bacillus subtilis was cloned and expressed to produce l-menthol from d,l-menthyl acetate. The highest enantiomeric excess (ee) value of the product generated by pnbA was only approximately 80%, with a high conversion rate (47.8%) of d,l-menthyl acetate with the help of a cosolvent, indicating high catalytic activity but low enantioselectivity (E = 19.95). To enhance the enantioselectivity and catalytic efficiency of pnbA to d,l-menthyl acetate in an organic solvent-free system, site-directed mutagenesis was performed based on the results of molecular docking. The F314E/F315T mutant showed the best catalytic properties (E = 36.25) for d,l-menthyl acetate, with 92.11% ee and 30.58% conversion of d,l-menthyl acetate. To further improve the properties of pnbA, additional mutants were constructed based on the structure-guided triple-code saturation mutagenesis strategy. Finally, four mutants were screened for the best enantioselectivity (ee > 99%, E > 300) and catalytic efficiency at a high substrate concentration (200 g/L) without a cosolvent. This work provides several generally applicable biocatalysts for the industrial production of l-menthol.


Subject(s)
Esterases , Menthol , Esterases/genetics , Esterases/chemistry , Menthol/chemistry , Bacillus subtilis/genetics , Molecular Docking Simulation , Plant Extracts , Acetates
4.
Food Microbiol ; 116: 104346, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689429

ABSTRACT

Microbial interactions play an important role in the formation, stabilization and functional performance of natural microbial communities. However, little is known about how the microbes present interactions to build a stable natural microbial community. Here, we developed Jiangqu, the solid-state fermented starters of thick broad-bean sauce formed naturally in factory, as model microbial communities by characterizing its diversity of microbial communities and batch stability. The dominant microbial strains and their fungi-bacteria interactions during solid-state fermentation of Jiangqu were characterized. In all batches of Jiangqu, Aspergillus oryzae, Bacillus, Staphylococcus and Weissella dominated in the communities and such a community structure could almost reduplicate between batches. Direct adsorption and competition were identified as the main interactions between A. oryzae and dominant bacteria during solid-state fermentation, which were quite different from liquid co-cultivation of A. oryzae and dominant bacteria. These results will help us better understand the intrinsic mechanism in the formation and stabilization of microbial communities from traditional solid-state qu-making and fermentation.


Subject(s)
Aspergillus oryzae , Bacillus , Microbiota , Fermentation , Aspergillus oryzae/genetics , Bacteria/genetics
5.
Enzyme Microb Technol ; 169: 110267, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37321017

ABSTRACT

2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G), a stable glucoside derivative of L-ascorbic acid (L-AA), can be one-step synthesized by sucrose phosphorylase (SPase). In this study, we attempted to produce extracellular SPase in Bacillus subtilis WB800 for the food-grade production of AA-2G. The results showed that the secretion of SPases did not require signal peptide. Promoter and its compatibility to target SPase gene were proved to be the key factors for high-level secretion. The strong promoter P43 and synthetic SPase gene derived from Bifidobacterium longum (BloSPase) were selected due to generate a relatively high extracellular activity (0.94 U/mL) for L-AA glycosylation. A highly active dual-promoter system PsigH-100-P43 was further constructed, which produced the highest extracellular and intracellular activity were 5.53 U/mL and 6.85 U/mL in fed-batch fermentation, respectively. Up to 113.58 g/L of AA-2G could be achieved by the supernatant of fermentation broth and a higher yield of 146.42 g/L was obtained by whole-cells biotransformation. Therefore, the optimal dual-promoter system in B. subtilis is suitable for the food-grade scale-up production of AA-2G.


Subject(s)
Ascorbic Acid , Bacillus subtilis , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Ascorbic Acid/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism
6.
Appl Microbiol Biotechnol ; 107(15): 4803-4813, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37335363

ABSTRACT

α-Monoglucosyl hesperidin is a promising food additive with various activities. However, there are a few reports about the production of α-monoglucosyl hesperidin. Here, to develop a practical and safe process for α-monoglucosyl hesperidin synthesis, we used nonpathogenic Bacillus subtilis as a host to express cyclodextrin glucanotransferase (CGTase) from Bacillus sp. A2-5a. The promoters and signal peptides were screened to optimize the transcription and secretion of CGTase in B. subtilis. The results of optimization showed that the best signal peptide and promoter were YdjM and PaprE, respectively. Finally, the enzyme activity increased to 46.5 U mL-1, 8.7 times that of the enzyme expressed from the strain containing pPHpaII-LipA, and the highest yield of α-monoglucosyl hesperidin was 2.70 g L-1 by enzymatic synthesis using the supernatant of the recombinant B. subtilis WB800 harboring the plasmid pPaprE-YdjM. This is the highest α-monoglucosyl hesperidin production level using recombinant CGTase to date. This work provides a generally applicable method for the scaled-up production of α-monoglucosyl hesperidin. KEY POINTS: • A three-step procedure was created for high throughput signal peptide screening. • YdjM and PaprE were screened from 173 signal peptides and 13 promoters. • α-Monoglucosyl hesperidin was synthesized by CGTase with a yield of 2.70 g L-1.


Subject(s)
Bacillus , Hesperidin , Bacillus subtilis/metabolism , Bacillus/metabolism , Glucosyltransferases/metabolism , Protein Sorting Signals
7.
Prep Biochem Biotechnol ; 53(2): 157-166, 2023.
Article in English | MEDLINE | ID: mdl-35323097

ABSTRACT

Valinomycin is a cyclodepsipeptide antibiotic with a broad spectrum of biological activities, such as antiviral, antitumor, and antifungal activities. However, the low yield of valinomycin often limits its applications in medicine, agriculture, and industry. In our previous report, Streptomyces sp. ZJUT-IFE-354 was identified as a high-yielding strain of valinomycin. In this study, Plackett-Burman design (PBD) and response surface methodology (RSM) were used to optimize components of medium. The optimal medium contained 31 g/L glucose, 22 g/L soybean meal, and 1.6 g/L K2HPO4·3H2O, which could generate 262.47 ± 4.28 mg/L of valinomycin. Then, the culture conditions were optimized by a one-factor-at-a-time (OFAT) approach. The optimal conditions for the strain included a seed age of 24 h, an inoculum size of 8% (v/v), an incubation temperature of 28 °C, an initial pH of 7.2, an elicitor of 0.1% Bacillus cereus feeding at 24 h cultivation, and the feeding of 0.6% L-valine at 36 h cultivation. The final valinomycin production increased to 457.23 ± 9.52 mg/L, which was the highest yield ever reported. It highlights that RSM and OFAT may be efficient methods to enhance valinomycin production by Streptomyces sp. ZJUT-IFE-354.


Subject(s)
Streptomyces , Valinomycin , Fermentation , Anti-Bacterial Agents , Bacillus cereus , Culture Media
8.
3 Biotech ; 12(12): 331, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36311375

ABSTRACT

Ectoine is a compatible solutes that is diffusely dispersed in bacteria and archaea. It plays a significant role as protectant against various external pressures, such as high temperature, high osmolarity, dryness and radiation, in cells. Ectoine can be utilized in cosmetics due to its properties of moisturizing and antiultraviolet. It can also be used in the pharmaceutical industry for treating various diseases. Therefore, strong protection of ectoine creates a high commercial value. Its current market value is approximately US$1000 kg-1. However, traditional ectoine production in high-salinity media causes high costs of equipment loss and wastewater treatment. There is a growing attention to reduce the salinity of the fermentation broth without sacrificing the production of ectoine. Thus, heterologous production of ectoine in nonhalophilic microorganisms may represent the new generation of the industrial production of ectoine. In this review, we summarized and discussed the biological activities of ectoine on cell and human health protection and its heterologous production.

9.
Appl Environ Microbiol ; 88(17): e0102722, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35950845

ABSTRACT

Hesperidin, a flavonoid enriched in citrus peel, can be enzymatically glycosylated using CGTase with significantly improved water solubility. However, the reaction catalyzed by wild-type CGTase is rather inefficient, reflected in the poor production rate and yield. By focusing on the aglycon attacking step, seven residues were selected for mutagenesis in order to improve the transglycosylation efficiency. Due to the lack of high-throughput screening technology regarding to the studied reaction, we developed a size/polarity guided triple-code strategy in order to reduce the library size. The selected residues were replaced by three rationally chosen amino acids with either changed size or polarity, leading to an extremely condensed library with only 32 mutants to be screened. Twenty-five percent of the constructed mutants were proved to be positive, suggesting the high quality of the constructed library. Specific transglycosylation activity of the best mutant Y217F was assayed to be 935.7 U/g, and its kcat/KmA is 6.43 times greater than that of the wild type. Homology modeling and docking computation suggest the source of notably enhanced catalytic efficiency is resulted from the combination of ligand transfer and binding effect. IMPORTANCE Size/polarity guided triple-code strategy, a novel semirational mutagenesis strategy, was developed in this study and employed to engineer the aglycon attacking site of CGTase. Screening pressure was set as improved hesperidin glucoside synthesis ability, and eight positive mutants were obtained by screening only 32 mutants. The high quality of the designed library confirms the effectiveness of the developed strategy is potentially valuable to future mutagenesis studies. Mechanisms of positive effect were explained. The best mutant exhibits 6.43 times enhanced kcat/KmA value and confirmed to be a superior whole-cell catalyst with potential application value in synthesizing hesperidin glucosides.


Subject(s)
Hesperidin , Glucosyltransferases/metabolism , Mutagenesis, Site-Directed , Substrate Specificity
10.
Metabolites ; 12(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35736418

ABSTRACT

The application of pesticides is critical during the growth of high-quality grape for wine making. However, pesticide residues have significant influence on the wine flavor. In this study, gas chromatography-mass spectrometry (GC-MS) was performed and the obtained datasets were analyzed with multivariate statistical methods to investigate changes in flavor substances in wine during fermentation. The principal component analysis (PCA) score plot showed significant differences in the metabolites of wine treated with various pesticides. In trials using five pesticides (hexaconazole, difenoconazole, flutriafol, tebuconazole, and propiconazole), more than 86 metabolites were changed. Most of these metabolites were natural flavor compounds, like carbohydrates, amino acids, and short-chain fatty acids and their derivatives, which essentially define the appearance, aroma, flavor, and taste of the wine. Moreover, the five pesticides added to grape pulp exhibited different effects on the metabolic pathways, involving mainly alanine, aspartate and glutamate metabolism, butanoate metabolism, arginine, and proline metabolism. The results of this study will provide new insight into the potential impact of pesticide residues on the metabolites and sensory profile of wine during fermentation.

11.
Chirality ; 34(9): 1228-1238, 2022 09.
Article in English | MEDLINE | ID: mdl-35713364

ABSTRACT

Epilepsy is a chronic disease caused by sudden abnormal discharge of brain neurons, leading to transient brain dysfunction. Levetiracetam, developed by the UCB company in Belgium, is an effective drug for the treatment of epilepsy. (S)-Methyl 2-chlorobutanoate is an important chiral building block of levetiracetam, which has attracted a great deal of attention. In this study, a strain of lipase-produced Acinetobacter sp. zjutfet-1 was screened from soil samples. At optimized conditions for fermentation and biocatalysis, the bacterial lipase exhibited high catalytic activity for hydrolysis and stereoselectivity toward racemic methyl 2-chlorobutanoate. When the enzymatic reaction was carried out in 6% of racemic substrate, the enantiomeric excess (e.e.s ) reached more than 95%, with a yield of over 86%. Therefore, this lipase can efficiently resolve racemic methyl 2-chlorobutanoate and obtain (S)-methyl 2-chlorobutanoate, which presents great potential in the industrial production of levetiracetam.


Subject(s)
Acinetobacter , Lipase , Acinetobacter/metabolism , Biocatalysis , Hydrolysis , Levetiracetam , Lipase/metabolism , Stereoisomerism
12.
Appl Microbiol Biotechnol ; 106(12): 4575-4586, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35739344

ABSTRACT

Sucrose phosphorylase (SPase) has a remarkable capacity to synthesize numerous glucosides from abundantly available sucrose under mild conditions but suffers from specificity and regioselectivity issues. In this study, a loop engineering strategy was introduced to enhance the regioselectivity and substrate specificity of SPase for the efficient synthesis of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) via L-ascorbic acid (L-AA). P134, L341, and L343 were identified as "hotspots" for modulating the flexibility of loops, which significantly influenced the H-bonding network of L-AA in the active site, as well as the entrance of the substrate channel, thereby altering the regioselectivity and substrate specificity. Finally, the mutant L341V/L343F, with near-perfect control of the selectivity synthesis of the 2-OH group of L-AA (> 99%), was obtained. The AA-2G production by the mutant reached 244 g L-1 in a whole-cell biotransformation system, and the conversion rate of L-AA reached 64%, which is the highest level reported to date. Our work also provides a successful loop engineering case for modulating the regioselectivity and specificity of sucrose phosphorylase. KEY POINTS: • "Hotspots" were identified in the flexible loops of sucrose phosphorylase. • Mutants exhibited improved regioselectivity and specificity against L-ascorbic acid. • Synthesized AA-2G with high yield and regioselectivity by whole-cell of mutant.


Subject(s)
Ascorbic Acid , Glucosyltransferases , Glucosyltransferases/metabolism , Glycosylation , Substrate Specificity
13.
Int J Biol Macromol ; 209(Pt A): 376-384, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35398389

ABSTRACT

The enzymatic synthesis of 2-O-α-d-glucopyranosyl-glycerol (2-αGG) by transglycosylation activity of sucrose phosphorylase (SPase) is a promising method for 2-αGG manufacturing. However, there are only a few SPases available for 2-αGG production. Here, we report on the characterization and application of SPase from Lactobacillus reuteri (LrSPase). The results of transglycosylation properties assay showed that LrSPase was a potential glycerol glycosylating tool with high activity at pH 8.0 and 45 °C. And the transglycosylation activity of LrSPase was seriously inhibited by Fe3+, Zn2+ and Cu2+. Moreover, the result of substrate specificity assay showed LrSPase was able to catalyze the transglycosylation of 13 phenolic compounds. To produce commercially relevant concentrations of 2-αGG, we have developed a practical, efficient and scalable process for 2-αGG production using sucrose batch-feeding strategy by whole-cell catalyst. The maximum titer of 2-αGG was 237.68 g L-1 with a productivity of 23.39 mM h-1 and the molar conversion rate of glycerol reached 62.38%. To the best of our knowledge, this is the highest 2-αGG production level by using only SPase to synthesize 2-αGG until now. This study provides an effective way for industrial production of 2-αGG.


Subject(s)
Glycerol , Limosilactobacillus reuteri , Glucosyltransferases/chemistry , Sucrose
14.
J Agric Food Chem ; 70(16): 5066-5076, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35412325

ABSTRACT

2-O-α-d-Glucopyranosyl-l-ascorbic acid (AA-2G) is an ideal substitute for l-ascorbic acid because of its remarkable stability and improved biological activity, which can be easily applied in cosmetic, food, and medicine fields. However, impurity identification and control are significant procedures during the manufacturing of AA-2G. This study assessed a manufacturing routine of AA-2G synthesized by sucrose phosphorylase (SPase). First, three unknown process-related impurities were observed, which were further identified as 3-O-α-d-glucopyranosyl- l-ascorbic acid (impurity I), 2-O-α-d-glucopyranosyl-l-dehydroascorbic acid (impurity II), and 13-O-α-d-glucopyranosyl-2-O-α-d-glucopyranosyl-l-ascorbic acid (impurity III), respectively. Second, a comprehensive formation pathway of impurities was elucidated, and specific strategies corresponding to controlling each impurity were also proposed. Specifically, the content of impurity I can be reduced by 50% by fine tuning reaction conditions. The impurity II-free purification process was also achieved by applying a low concentration of alkali. Finally, a semi-rational design was introduced, and a single mutant L343F was obtained by site-directed mutagenesis, which reduced impurities I and III by 63.9 and 100%, respectively, without affecting the transglycosylation activity. It is expected that the reported impurity identification and control strategies during the AA-2G production will facilitate its industrial production.


Subject(s)
Ascorbic Acid , Glucosyltransferases , Ascorbic Acid/analogs & derivatives , Ascorbic Acid/metabolism , Biocatalysis , Glucosyltransferases/genetics , Glucosyltransferases/metabolism
15.
Appl Biochem Biotechnol ; 194(7): 3082-3096, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35347671

ABSTRACT

The α-glucosidase (EC 3.2.1.20) XgtA produced by Xanthomonas campestris shows high α-glucosyl transfer activity toward alcoholic and phenolic hydroxyl groups. Ethyl vanillin-α-glucoside, a precursor-aroma compound with improved water solubility and thermal stability, can be synthesized through the transglycosylation of ethyl vanillin by XgtA. However, its low ethyl vanillin-α-glucoside yield and ability to hydrolyze ethyl vanillin-α-glucoside limits for industrial applications. Rational design and site-directed mutagenesis were employed to generate three variants of X. campestris α-glucosidase, L145I, S272T, and L145I/S272T, with improved transglycosylation activity toward EV. The highest yield is up to 52.41% by L145I/S272T, which also displayed remarkably lower hydrolysis activity toward the glycoside product EVG compared to XgtA. These results also showed that the mutation in sugar-binding subsite + 1 is more effective than subsite -1 for enhancing the ratio of transglycosylation/hydrolysis for the α-glucosidase XgtA.


Subject(s)
Xanthomonas campestris , Benzaldehydes , Glucosides , Glycosylation , Hydrolysis , Kinetics , Substrate Specificity , Xanthomonas campestris/genetics , Xanthomonas campestris/metabolism , alpha-Glucosidases/metabolism
16.
Biotechnol Lett ; 43(9): 1757-1764, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34037890

ABSTRACT

l-Menthyl α-D-glucopyranoside (α-MenG) is a glycoside derivative of l-menthol with improved water-solubility and new flavor property as a food additive. α-MenG can be synthesized through biotransformation, but its scale-up production was rarely reported. In this study, the properties of an α-glucosidase from Xanthomonas campestris pv. campestris 8004 (Agl-2) in catalyzing the glucosylation of menthol was investigated. Agl-2 can almost completely glycosylate l-menthol (> 99%) when using 1.2 M maltose as glycosyl donor. Accumulated glucose resulted from maltose hydrolysis and transglycosylation caused the inhibition of the glucosylation rate (40% reduction of the glucosylation rate in the presence of 1.2 M glucose) which can be avoided through whole-cell catalysis with recombinant E. coli. Interestingly, in spite of the poor solubility of menthol, the productivity of α-MenG reached 24.7 g/(L·h) in a 2 L catalyzing system, indicating industrialization of the reported approach.


Subject(s)
Escherichia coli/growth & development , Glucosides/chemistry , Menthol/chemistry , Xanthomonas campestris/enzymology , alpha-Glucosidases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Biotransformation , Escherichia coli/genetics , Glycosylation , Hydrolysis , Maltose/chemistry , Protein Engineering , Xanthomonas campestris/genetics , alpha-Glucosidases/genetics
17.
Sheng Wu Gong Cheng Xue Bao ; 37(1): 112-129, 2021 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-33501794

ABSTRACT

Water solubility, stability, and bioavailability, can be substantially improved after glycosylation. Glycosylation of bioactive compounds catalyzed by glycoside hydrolases (GHs) and glycosyltransferases (GTs) has become a research hotspot. Thanks to their rich sources and use of cheap glycosyl donors, GHs are advantageous in terms of scaled catalysis compared to GTs. Among GHs, sucrose phosphorylase has attracted extensive attentions in chemical engineering due to its prominent glycosylation activity as well as its acceptor promiscuity. This paper reviews the structure, catalytic characteristics, and directional redesign of sucrose phosphorylase. Meanwhile, glycosylation of diverse chemicals with sucrose phosphorylase and its coupling applications with other biocatalysts are summarized. Future research directions were also discussed based on the current research progress combined with our working experience.


Subject(s)
Glucosyltransferases , Glycosyltransferases , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Glycoside Hydrolases/metabolism , Glycosylation , Glycosyltransferases/genetics
18.
Sheng Wu Gong Cheng Xue Bao ; 37(12): 4169-4186, 2021 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-34984866

ABSTRACT

Glycoside compounds are widely used in medicine, food, surfactant, and cosmetics. The glycosidase-catalyzed synthesis of glycoside can be operated at mild reaction conditions with low material cost. The glycosidase-catalyzed processes include reverse hydrolysis and transglycosylation, appropriately reducing the water activity in both processes may effectively improve the catalytic efficiency of glucosidase. However, glucosidase is prone to be deactivated at low water activity. Thus, glucosidase was immobilized to maintain its activity in the low water activity environment, and even in neat organic solvent system. This article summarizes the advances in glycosidase immobilization in the past 30 years, including single or comprehensive immobilization techniques, and immobilization techniques combined with genetic engineering, with the aim to provide a reference for the synthesis of glycosides using immobilized glycosidases.


Subject(s)
Glycoside Hydrolases , Glycosides , Catalysis , Enzymes, Immobilized , Glycoside Hydrolases/genetics , Glycosides/biosynthesis , Hydrolysis
19.
Appl Microbiol Biotechnol ; 104(22): 9523-9534, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33034701

ABSTRACT

The reversible hydrolytic property of glycosyl hydrolases (GHs) as well as their acceptance of aglycones other than water has provided the abilities of GHs in synthesizing glycosides. Together with desirable physiochemical properties of glycosides and their high commercial values, research interests have been aroused to investigate the synthetic other than the hydrolytic properties of GHs. On the other hand, just like the esterification processes catalyzed by lipases, GH synthetic effectiveness is strongly obstructed by water both thermodynamically and kinetically. Medium engineering by involving organic solvents can be a viable approach to alleviate the obstacles caused by water. However, as native hydrolyases function in water-enriched environments, most GHs display poor catalytic performance in the presence of organic solvents. Some GHs from thermophiles are more tolerant to organic solvents due to their robust folded structures with strong residue interactions. Other than native sources, immobilization, protein engineering, employment of surfactant, and lyophilization have been proved to enhance the GH stability from the native state, which opens up the possibilities for GHs to be employed in unconventional media as synthases. KEY POINTS: • Unconventional media enhance the synthetic ability but destabilize GHs. • Viable approaches are discussed to improve GH stability from the native state. • GHs robust in unconventional media can be valuable industrial synthases.


Subject(s)
Lipase , Catalysis , Esterification , Glycosylation , Lipase/metabolism , Solvents
20.
Appl Microbiol Biotechnol ; 103(23-24): 9423-9432, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31713673

ABSTRACT

α-Glucosidase, Agl2, from Xanthomonas campestris was successfully overexpressed in Escherichia coli BL21(DE3) cells and purified with Ni columns. The enzyme exhibits glycosylation abilities towards a wide range of phenolic substrates, including phenol, vanillin, and ethyl vanillin, with maltose as the glycosyl donor. The catalytic properties of the purified enzyme were further investigated. It was observed that the synthesized glycosides started to degrade with prolonged catalytic time, giving an "n"-shaped kinetic profile. To understand such catalytic behavior, the Agl2-catalyzed glycosylation process was investigated kinetically. Based on the obtained parameters, it was concluded that although the substrate conversions are thermodynamically restricted in a batch system, the glycosylation efficiency can be kinetically controlled by the glycosylation/hydrolysis selectivity. Glucose was produced by both glycosylation and hydrolysis, significantly impacting the glycosylation efficiency. This study provides a mechanistic understanding of the α-glucosidase-catalyzed glycosylation process in a water-based system. The developed kinetic model was successful in explaining and analyzing the catalytic process. It is suggested that when α-glucosidase is employed for glycosylation in a water-enriched environment, the catalytic efficiency is mainly impacted by the enzyme's glycosylation/hydrolysis selectivity and glucose content in the catalytic environment.


Subject(s)
Bacterial Proteins/metabolism , Glycosides/metabolism , alpha-Glucosidases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Catalysis , Gene Expression , Glucose/metabolism , Glycosides/chemistry , Glycosylation , Hydrolysis , Kinetics , Maltose/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity , Thermodynamics , Water/metabolism , alpha-Glucosidases/genetics , alpha-Glucosidases/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...