Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Hazard Mater ; 476: 135069, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38944988

ABSTRACT

The frequent detection of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) in various environments has raised concerns owing to its comparable or even higher environmental persistence and toxicity than perfluorooctane sulfonate (PFOS). This study investigated the plasma degradation of F-53B for the first time using a water film plasma discharge system. The results revealed that F-53B demonstrated a higher rate constant but similar defluorination compared to PFOS, which could be ascribed to the introduction of the chlorine atom. Successful elimination (94.8-100 %) was attained at F-53B initial concentrations between 0.5 and 10 mg/L, with energy yields varying from 15.1 to 84.5 mg/kWh. The mechanistic exploration suggested that the decomposition of F-53B mainly occurred at the gas-liquid interface, where it directly reacted with reactive species generated by gas discharge. F-53B degradation pathways involving dechlorination, desulfonation, carboxylation, C-O bond cleavage, and stepwise CF2 elimination were proposed based on the identified byproducts and theoretical calculations. Furthermore, the demonstrated effectiveness in removing F-53B in various coexisting ions and water matrices highlighted the robust anti-interference ability of the treatment process. These findings provide mechanistic insights into the plasma degradation of F-53B, showcasing the potential of plasma processes for eliminating PFAS alternatives in water.

2.
Water Res ; 253: 121316, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38377926

ABSTRACT

Non-thermal plasma emerges as a promising technology for per- and polyfluoroalkyl substances (PFAS) decomposition due to its notable efficacy and environmentally friendly characteristics. In this study, we demonstrated the efficacy of a falling film dielectric barrier discharge (DBD) system for the removal of 10 PFAS, including perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs) and hexafluoropropylene oxide (HFPO) oligomer acids. Results showed that compounds with fluoroalkyl chain length>4 were effectively decomposed within 100 min, with long-chain PFAS demonstrating more pronounced removal performance than their short-chain analogues. The superior removal but low defluorination observed in HFPO oligomer acids could be ascribed to their ether-based structural features. The integration of experimental results with density functional theory (DFT) calculations revealed that the synergistic effects of various reactive species are pivotal to their efficient decomposition, with electrons, OH•, and NO2• playing essential roles. In contrast, the degradation of PFSAs was more dependent on electron attack than that of PFCAs and HFPO oligomer acids. Significantly, the most crucial degradation pathway for HFPO oligomer acids was the cleavage of ether CO, whether through radical or electron attack. Furthermore, the demonstrated effective removal in various water matrices showed the potential of the plasma system for removing PFAS in complex aquatic environments. This study provided mechanistic insights into PFAS degradation behavior in plasma processes, and it underscored the vital influence of molecular structures on degradability, thereby contributing to the further development and regulation of plasma-based technologies for treating PFAS in water.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Carboxylic Acids , Sulfonic Acids , Ethers
3.
Sci Total Environ ; 921: 171195, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38408673

ABSTRACT

Low-molecular-weight organic acids (LMWOAs) and nano- and micro-plastics (NPs and MPs) are both widely distributed in terrestrial systems. To better understand the influence of LMWOAs on the transport of NPs and MPs, the effects of 0.5 mM citric- (CA), malic- (MA), and tartaric- (TA) acid on the transport of nano- (0.51 µm, PS NPs) and micro- (1.1 µm, PS MPs) polystyrene particles (2 mg L-1) in saturated quartz sand were investigated. All three LMWOAs decreased the transport of PS NPs and MPs, regardless of ionic composition or strength (0.1-10 mM NaCl and 0.1-1 mM CaCl2). Further investigation revealed that the interfacial interactions between PS-quartz sand surfaces and PS-PS were altered by LMWOAs. LMWOAs adsorbed to quartz sand surfaces could serve as new deposition sites, as evidenced by the decreased transport of PS NPs and MPs in quartz sand that was subjected to pre-equilibration with selected MA, the low inhibition of PS transport with low concentrations of LMWOAs (0.1 mM), and also the adsorption of LMWOAs onto quartz sand surfaces by batch experiments. Meanwhile, the adsorption of LMWOAs on PS, hydrodynamic measurement and visual TEM observation together clarified the slight aggregation of PS NPs and MPs in suspensions, inducing the subsequent decrease in transport. Among them, the adsorption of LMWOAs onto quartz sand surfaces was found to be the main factor dominating the decreased transport of both PS NPs and MPs in saturated quartz sand.

4.
Chemosphere ; 338: 139607, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37480953

ABSTRACT

Lindane is a broad-spectrum organochlorine insecticide which has been included in the persistent organic pollutants (POPs) list together with its two hexachlorocyclohexane (HCH) isomers. Due to its continuous use in the past decades, the environmental impacts of HCHs are still severe now. Therefore, in the present study, dielectric barrier discharge (DBD) plasma was used as an advanced oxidation process for the destruction of HCHs in water. The result indicated that in air-DBD system, over 95.4% of the initial 5 mg L-1 lindane was degraded within 60 min. Moreover, DBD plasma displayed high degradation efficiencies of other HCH isomers including α, ß, and δ-HCH. Electron spin resonance spectra, scavenging experiments and theoretical calculations revealed that the synergistic effects of various reactive species were the main reason for the high efficiency of DBD plasma. For instance, both hydroxyl radicals (•OH) and electrons (e-) could initiate the degradation of HCHs, while other reactive species such as 1O2 and ONOOH played important roles in the decomposition of intermediates. Therefore, the present study not only provided an effective approach for the treatment of HCHs, but also revealed the underlying mechanism based on in-depth experimental investigation and theoretical calculation.


Subject(s)
Hexachlorocyclohexane , Insecticides , Hexachlorocyclohexane/analysis , Isomerism , Oxidation-Reduction
5.
Chemosphere ; 296: 134016, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35182529

ABSTRACT

As an emerging class of organic contaminants, polyhalogenated carbazoles (PHCZs) have been increasingly detected all over the world since 1980s. Due to the environmental persistence, bioaccumulation, and dioxin-like toxicity, PHCZs have aroused widespread concerns in recent years. However, efficient approach for the degradation of PHCZs is quite limited so far. Therefore, in this study, an advanced oxidation process (AOP), sulfidated zero-valent iron/peroxymonosulfate (S-ZVI/PMS) system was used to degrade 3-chlorocarbazole (3-CCZ), which is one of the mostly detected PHCZs congeners. The degradation of 3-CCZ was systematically studied under different conditions by varying the molar ratio of S/Fe, the dosage of S-ZVI or PMS, pH and temperature. The results indicated that S-ZVI/PMS was an effective strategy for PHCZs treatment. The 20-min degradation efficiency of 3-CZZ was up to 96.6% with the pseudo-first-order rate constant of 0.168 min-1 under the conditions of 5 mg/L 3-CZZ, 0.3 g/L S-ZVI (S/Fe = 0.2), 1.0 mM PMS, pH 5.8 and 25 °C. HCO3-, Cl- and humic acid (HA) showed inhibitory effects to different degrees. Results of the electron paramagnetic resonance (EPR) and scavenging experiments clarified the dominant role of •OH, followed by 1O2 and SO4•─. The product analysis and DFT calculation revealed three degradation pathways of 3-CCZ, namely hydroxylation, dechlorination and C-N bond cleavage, which largely alleviated the toxicity of the parent compound. This study showed the effectiveness of S-ZVI/PMS system in PHCZs treatment and provided a comprehensive investigation on the degradation behaviors of PHCZs in AOPs.


Subject(s)
Iron , Water Pollutants, Chemical , Carbazoles , Iron/chemistry , Kinetics , Peroxides/chemistry , Water , Water Pollutants, Chemical/analysis
6.
Environ Sci Technol ; 56(1): 349-360, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34936333

ABSTRACT

Perfluorooctanoic acid (PFOA) poses a serious threat to the ecological environment and biological health because of its ubiquitous distribution, extreme persistence, and high toxicity. In this study, we designed a novel gas-liquid dielectric barrier discharge (GLDBD) reactor which could efficiently destruct PFOA. PFOA removal efficiencies can be obtained in various water matrices, which were higher than 98.0% within 50 min, with energy yields higher than 114.5 mg·kWh-1. It was confirmed that the reactive species including e-, ONOOH, •NO2, and hydroxyl radicals (•OH) were responsible for PFOA removal. Especially, this study first revealed the crucial role of reactive nitrogen species (RNS) for PFOA degradation in the plasma system. Due to the generation of a large amount of RNS, the designed GLDBD reactor proved to be less sensitive to various water matrices, which meant a broader promising practical application. Moreover, influential factors including high concentration of various ions and humic acid (HA), were investigated. The possible PFOA degradation pathways were proposed based on liquid chromatograph-mass spectrometer (LC-MS) results and density functional theory (DFT) calculation, which further confirmed the feasibility of PFOA removal with RNS. This research, therefore, provides an effective and versatile alternative for PFOA removal from various water matrices.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Caprylates , Reactive Nitrogen Species , Water
SELECTION OF CITATIONS
SEARCH DETAIL