Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Publication year range
1.
Animal Model Exp Med ; 7(3): 324-336, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38155461

ABSTRACT

BACKGROUND: Bitter taste receptors (Tas2rs) are generally considered to sense various bitter compounds to escape the intake of toxic substances. Bitter taste receptors have been found to widely express in extraoral tissues and have important physiological functions outside the gustatory system in vivo. METHODS: To investigate the physiological functions of the bitter taste receptor cluster Tas2r106/Tas2r104/Tas2r105/Tas2r114 in lingual and extraoral tissues, multiple Tas2rs mutant mice and Gnat3 were produced using CRISPR/Cas9 gene-editing technique. A mixture containing Cas9 and sgRNA mRNAs for Tas2rs and Gnat3 gene was microinjected into the cytoplasm of the zygotes. Then, T7EN1 assays and sequencing were used to screen genetic mutation at the target sites in founder mice. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunostaining were used to study the expression level of taste signaling cascade and bitter taste receptor in taste buds. Perception to taste substance was also studied using two-bottle preference tests. RESULTS: We successfully produced several Tas2rs and Gnat3 mutant mice using the CRISPR/Cas9 technique. Immunostaining results showed that the expression of GNAT3 and PLCB2 was not altered in Tas2rs mutant mice. But qRT-PCR results revealed the changed expression profile of mTas2rs gene in taste buds of these mutant mice. With two-bottle preference tests, these mutant mice eliminate responses to cycloheximide due to genetic mutation of Tas2r105. In addition, these mutant mice showed a loss of taste perception to quinine dihydrochloride, denatonium benzoate, and cucurbitacin B (CuB). Gnat3-mediated taste receptor and its signal pathway contribute to CuB perception. CONCLUSIONS: These findings implied that these mutant mice would be a valuable means to understand the biological functions of TAS2Rs in extraoral tissues and investigate bitter compound-induced responses mediated by these TAS2Rs in many extraoral tissues.


Subject(s)
Mutation , Receptors, G-Protein-Coupled , Taste Perception , Animals , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Taste Perception/genetics , Taste Perception/drug effects , Mice , Quaternary Ammonium Compounds/pharmacology , Taste Buds/drug effects , Taste Buds/metabolism , CRISPR-Cas Systems , Taste/drug effects , Taste/genetics , Transducin/genetics , Transducin/metabolism , Gene Editing , Triterpenes , Heterotrimeric GTP-Binding Proteins , Phospholipase C beta
2.
Animal Model Exp Med ; 6(6): 585-597, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37246733

ABSTRACT

BACKGROUND: Staphylococcus aureus can cause serious infections by secreting many superantigen exotoxins in "carrier" or "pathogenic" states. HLA DQ and HLA DR humanized mice have been used as a small animal model to study the role of two molecules during S. aureus infection. However, the contribution of HLA DP to S. aureus infection is unknown yet. METHODS: In this study, we have produced HLA DP401 and HLA DRA0101 humanized mice by microinjection of C57BL/6J zygotes. Neo-floxed IAß+/- mice were crossbred with Ella-Cre and further crossbred with HLA DP401 or HLA-DRA0101 humanized mice. After several rounds of traditional crossbreeding, we finally obtained HLA DP401-IAß-/- and HLA DRA-IAß-/- humanized mice, in which human DP401 or DRA0101 molecule was introduced into IAß-/- mice deficient in endogenous murine MHC class II molecules. A transnasal infection murine model of S. aureus pneumonia was induced in the humanized mice by administering 2 × 108 CFU of S. aureus Newman dropwise into the nasal cavity. The immune responses and histopathology changes were further assessed in lungs in these infected mice. RESULTS: We evaluated the local and systemic effects of S. aureus delivered intranasally in HLA DP401-IAß-/- and HLA DRA-IAß-/- transgenic mice. S. aureus Newman infection significantly increased the mRNA level of IL 12p40 in lungs in humanized mice. An increase in IFN-γ and IL-6 protein was observed in HLA DRA-IAß-/- mice. We observed a declining trend in the percentage of F4/80+ macrophages in lungs in HLA DP401-IAß-/- mice and a decreasing ratio of CD4+ to CD8+ T cells in lungs in IAß-/- mice and HLA DP401-IAß-/- mice. A decreasing ratio of Vß3+ to Vß8+ T cells was also found in the lymph node of IAß-/- mice and HLA DP401-IAß-/- mice. S. aureus Newman infection resulted in a weaker pathological injury in lungs in IAß-/- genetic background mice. CONCLUSION: These humanized mice will be an invaluable mouse model to resolve the pathological mechanism of S. aureus pneumonia and study what role DP molecule plays in S. aureus infection.


Subject(s)
Genes, MHC Class II , Pneumonia, Staphylococcal , Mice , Humans , Animals , HLA-DR alpha-Chains/pharmacology , Staphylococcus aureus , Pneumonia, Staphylococcal/genetics , CD8-Positive T-Lymphocytes , Mice, Inbred C57BL , Mice, Transgenic
3.
Animal Model Exp Med ; 5(4): 350-361, 2022 12.
Article in English | MEDLINE | ID: mdl-35791899

ABSTRACT

BACKGROUND: There are remarkable genetic differences between animal major histocompatibility complex (MHC) systems and the human leukocyte antigen (HLA) system. HLA transgenic humanized mouse model systems offer a much better method to study the HLA-A-related principal mechanisms for vaccine development and HLA-A-restricted responses against infection in human. METHODS: A recombinant gene encoding the chimeric HLA-A30 monochain was constructed. This HHD molecule contains the following: α1-α2 domains of HLA-A30, α3 and cytoplasmic domains of H-2Db , linked at its N-terminus to the C-terminus of human ß2m by a 15-amino-acid peptide linker. The recombinant gene encoding the chimeric HLA-A30 monochain cassette was introduced into bacterial artificial chromosome (BAC) CH502-67J3 containing the HLA-A01 gene locus by Red-mediated homologous recombination. Modified BAC CH502-67J3 was microinjected into the pronuclei of wild-type mouse oocytes. This humanized mouse model was further used to assess the immune responses against influenza A virus (H1N1) pdm09 clinically isolated from human patients. Immune cell population, cytokine production, and histopathology in the lung were analyzed. RESULTS: We describe a novel human ß2m-HLA-A30 (α1α2)-H-2Db (α3 transmembrane cytoplasmic) (HHD) monochain transgenic mouse strain, which contains the intact HLA-A01 gene locus including 49 kb 5'-UTR and 74 kb 3'-UTR of HLA-A01*01. Five transgenic lines integrated into the large genomic region of HLA-A gene locus were obtained, and the robust expression of exogenous transgene was detected in various tissues from A30-18# and A30-19# lines encompassing the intact flanking sequences. Flow cytometry revealed that the introduction of a large genomic region in HLA-A gene locus can influence the immune cell constitution in humanized mice. Pdm09 infection caused a similar immune response among HLA-A30 Tg humanized mice and wild-type mice, and induced the rapid increase of cytokines, including IFN-γ, TNF-α, and IL-6, in both HLA-A30 humanized Tg mice and wild-type mice. The expression of HLA-A30 transgene was dramatically promoted in tissues from A30-9# line at 3 days post-infection (dpi). CONCLUSIONS: We established a promising preclinical research animal model of HLA-A30 Tg humanized mouse, which could accelerate the identification of novel HLA-A30-restricted epitopes and vaccine development, and support the study of HLA-A-restricted responses against infection in humans.


Subject(s)
Disease Models, Animal , HLA-A Antigens , Mice, Transgenic , Animals , Humans , Influenza A Virus, H1N1 Subtype , Mice
4.
Animal Model Exp Med ; 4(2): 116-128, 2021 06.
Article in English | MEDLINE | ID: mdl-34179719

ABSTRACT

Background: Human leukocyte antigen (HLA)-DP is much less studied than other HLA class II antigens, that is, HLA-DR and HLA-DQ, etc. However, the accumulating data have suggested the important roles of DP-restricted responses in the context of cancer, allergy, and infectious disease. Lack of animal models expressing these genes as authentic cis-haplotypes blocks our understanding for the role of HLA-DP haplotypes in immunity. Methods: To explore the potential cis-acting control elements involved in the transcriptional regulation of the HLA-DPA1/DPB1 gene, we performed the expression analysis using bacterial artificial chromosome (BAC)-based transgenic humanized mice in the C57BL/6 background, which carried the entire HLA-DP401 gene locus. We further developed a mouse model of Staphylococcus aureus pneumonia in HLA-DP401 humanized transgenic mice, and performed the analysis on the expression pattern of HLA-DP401 and immunological responses in the model. Results: In this study, we screened and identified a BAC clone spanning the entire HLA-DP gene locus. DNA from this clone was analyzed for integrity by pulsed-field gel electrophoresis and then microinjected into fertilized mouse oocytes to produce transgenic founder animals. Nine sets of PCR primers for regional markers with an average distance of 15 kb between each primer were used to confirm the integrity of the transgene in the five transgenic lines carrying the HLA-DPA1/DPB1 gene. Transgene copy numbers were determined by real-time PCR analysis. HLA-DP401 gene expression was analyzed at the mRNA and protein level. Although infection with S aureus Newman did not alter the percentage of immune cells in the spleen and thymus from the HLA-DP401-H2-Aß1 humanized mice. Increased expression of HLA-DP401 was observed in the thymus of the humanized mice infected by S aureus. Conclusions: We generated several BAC transgenic mice, and analyzed the expression of HLA-DPA1/DPB1 in those mice. A model of Saureus-induced pneumonia in the HLA-DP401-H2-Aß1-/- humanized mice was further developed, and S aureus infection upregulated the HLA-DP401 expression in thymus of those humanized mice. These findings demonstrate the potential of those HLA-DPA1/DPB1 transgenic humanized mice for developing animal models of infectious diseases and MHC-associated immunological diseases.


Subject(s)
HLA-DP Antigens , HLA-DQ Antigens , Animals , Chromosomes, Artificial, Bacterial/genetics , HLA-DP Antigens/genetics , HLA-DQ Antigens/genetics , Haplotypes , Mice , Mice, Inbred C57BL
5.
Front Immunol ; 12: 625881, 2021.
Article in English | MEDLINE | ID: mdl-33717140

ABSTRACT

T cells play a critical role in coronavirus diseases. How they do so in COVID-19 may be revealed by analyzing the epigenetic chromatin accessibility of cis- and trans-regulatory elements and creating transcriptomic immune profiles. We performed single-cell assay for transposase-accessible chromatin (scATAC) and single-cell RNA (scRNA) sequencing (seq) on the peripheral blood mononuclear cells (PBMCs) of severely ill/critical patients (SCPs) infected with COVID-19, moderate patients (MPs), and healthy volunteer controls (HCs). About 76,570 and 107,862 single cells were used, respectively, for analyzing the characteristics of chromatin accessibility and transcriptomic immune profiles by the application of scATAC-seq (nine cases) and scRNA-seq (15 cases). The scATAC-seq detected 28,535 different peaks in the three groups; among these peaks, 41.6 and 10.7% were located in the promoter and enhancer regions, respectively. Compared to HCs, among the peak-located genes in the total T cells and its subsets, CD4+ T and CD8+ T cells, from SCPs and MPs were enriched with inflammatory pathways, such as mitogen-activated protein kinase (MAPK) signaling pathway and tumor necrosis factor (TNF) signaling pathway. The motifs of TBX21 were less accessible in the CD4+ T cells of SCPs compared with those in MPs. Furthermore, the scRNA-seq showed that the proportion of T cells, especially the CD4+ T cells, was decreased in SCPs and MPs compared with those in HCs. Transcriptomic results revealed that histone-related genes, and inflammatory genes, such as NFKBIA, S100A9, and PIK3R1, were highly expressed in the total T cells, CD4+ T and CD8+ T cells, both in the cases of SCPs and MPs. In the CD4+ T cells, decreased T helper-1 (Th1) cells were observed in SCPs and MPs. In the CD8+T cells, activation markers, such as CD69 and HLA class II genes (HLA-DRA, HLA-DRB1, and HLA-DRB5), were significantly upregulated in SCPs. An integrated analysis of the data from scATAC-seq and scRNA-seq showed some consistency between the approaches. Cumulatively, we have generated a landscape of chromatin epigenetic status and transcriptomic immune profiles of T cells in patients with COVID-19. This has provided a deeper dissection of the characteristics of the T cells involved at a higher resolution than from previously obtained data merely by the scRNA-seq analysis. Our data led us to suggest that the T-cell inflammatory states accompanied with defective functions in the CD4+ T cells of SCPs may be the key factors for determining the pathogenesis of and recovery from COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , CD8-Positive T-Lymphocytes/physiology , COVID-19/immunology , Chromatin/metabolism , SARS-CoV-2/physiology , COVID-19/genetics , Calgranulin B/genetics , Chromatin/genetics , Class Ia Phosphatidylinositol 3-Kinase/genetics , Epigenome/immunology , Gene Expression Profiling , Humans , Immunity, Cellular/genetics , Inflammation/genetics , Lymphocyte Activation , NF-KappaB Inhibitor alpha/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Transposases/metabolism , Up-Regulation
6.
Animal Model Exp Med ; 1(2): 143-151, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30891559

ABSTRACT

BACKGROUND: Lingual epithelia in the tongue tip are among the most rapidly regenerating tissues, but the mechanism of cell genesis in this tissue is still unknown. Previous study has suggested the existence of multiple stem cell pools in lingual epithelia and papillae. Like K14+ and Sox2+ cells, NTPDase2+ cells have characteristics of stem cells. METHODS: We employed a system using doxycycline to conditionally ablate NTPDase2+ cells in lingual epithelia and papillae by regulated expression of the diphtheria toxin A (DTA) gene. Transgenic lines, which expressed the rtTA gene in NTPDase2+ cells, were produced by pronuclear injection of zygotes from C57BL/6 mice using the BAC clone RP23-47P18. The NTPDase2-rtTA transgenic mice were crossed with the TetO-DTA transgenic animals. The double transgenic mice were treated with doxycycline. Doxycycline (Dox) was diluted in 5% sucrose in water to a final concentration of 0.3-0.5 mg/mL and supplied as drinking water. RESULTS: After 15 days of Dox induction, the expression of NTPDase2, Sox2 and K14 was ablated from lingual epithelia. DTA expression in NTPDase2+ cells did not inhibit the turnover of GNAT3+ or PLCß2+ cells in taste buds, nor the expression of S100ß beneath lingual epithelia and papillae. After 35 days ablation of NTPDase2+ cells, the basic structure of lingual epithelia and papillae remained intact. However, the ratio of cell to total tissue area was decreased in lingual epithelia and circumvallate (CV) papillae. DTA expression also inhibited the regeneration of filiform papillae on the dorsal surface of the tongue tip. CONCLUSIONS: These studies provide important insights into the understanding of dynamic equilibrium among the multiple stem cell populations present in the lingual epithelia and papillae.

7.
BMC Dev Biol ; 16(1): 26, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27461387

ABSTRACT

BACKGROUND: Myostatin (MSTN) encodes a negative regulator of skeletal muscle mass that might have applications for promoting muscle growth in livestock. In this study, we aimed to test whether targeted MSTN editing, mediated by transcription activator-like effector nucleases (TALENs), is a viable approach to create myostatin-modified goats (Capra hircus). RESULTS: We obtained a pair of TALENs (MTAL-2) that could recognize and cut the targeted MSTN site in the goat genome. Fibroblasts from pedigreed goats were co-transfected with MTAL-2, and 272 monoclonal cell strains were confirmed to have mono- or bi-allelic mutations in MSTN. Ten cell strains with different genotypes were used as donor cells for somatic cell nuclear transfer, which produced three cloned kids (K179/MSTN(-/-), K52-2/MSTN (+/-), and K52-1/MSTN (+/+)). CONCLUSIONS: The results suggested that the MTAL-2 could disrupt MSTN efficiently in the goat genome. The mutated somatic cells could be used to produce MSTN-site mutated goats without developmental disruption. Thus, TALENs is an effective method for accurate genome editing to produce site-modified goats.


Subject(s)
Fibroblasts/pathology , Gene Editing , Myostatin/genetics , Transcription Activator-Like Effector Nucleases/metabolism , Animals , Cell Culture Techniques , Female , Fibroblasts/cytology , Genome , Goats , Male , Mutagenesis, Site-Directed
8.
Sheng Wu Gong Cheng Xue Bao ; 32(3): 329-38, 2016 Mar.
Article in Chinese | MEDLINE | ID: mdl-27349115

ABSTRACT

To knock out ß-lactoglobulin (BLG) gene and insert human lactoferrin (hLF) coding sequence at BLG locus of goat, the transcription activator-like effector nucleases (TALEN) mediated recombination was used to edit the BLG gene of goat fetal fibroblast, then as donor cells for somatic cell nuclear transfer. We designed a pair of specific plasmid TALEN-3-L/R for goat BLG exon III recognition sites, and BLC14-TK vector containing a negative selection gene HSV-TK, was used for the knock in of hLF gene. TALENs plasmids were transfected into the goat fetal fibroblast cells, and the cells were screened three days by 2 µg/mL puromycin. DNA cleavage activities of cells were verified by PCR amplification and DNA production sequencing. Then, targeting vector BLC14-TK and plasmids TALEN-3-L/R were co-transfected into goat fetal fibroblasts, both 700 µg/mL G418 and 2 µg/mL GCV were simultaneously used to screen G418-resistant cells. Detections of integration and recombination were implemented to obtain cells with hLF gene site-specific integration. We chose targeting cells as donor cells for somatic cell nuclear transfer. The mutagenicity of TALEN-3-L/R was between 25% and 30%. A total of 335 reconstructed embryos with 6 BLG-/hLF+ targeting cell lines were transferred into 16 recipient goats. There were 9 pregnancies confirmed by ultrasound on day 30 to 35 (pregnancy rate of 39.1%), and one of 50-day-old fetus with BLG-/hLF+ was achieved. These results provide the basis for hLF gene knock-in at BLG locus of goat and cultivating transgenic goat of low allergens and rich hLF in the milk.


Subject(s)
Goats/genetics , Lactoferrin/genetics , Lactoglobulins/genetics , Animals , Animals, Genetically Modified/genetics , Female , Fibroblasts , Gene Knock-In Techniques , Gene Knockout Techniques , Humans , Milk/chemistry , Nuclear Transfer Techniques , Plasmids , Pregnancy , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL