Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(11): 5084-5088, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38375913

ABSTRACT

The development of low-cost, high-efficiency, and stable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is a key challenge because the alkaline HER kinetics is slowed by an additional water dissociation step. Herein, we report an interfacial engineering strategy for polyoxometalate (POM)-stabilized nickel (Ni) quantum dots decorated on the surface of porous titanium mesh (POMs-Ni@PTM) for high-rate and stable alkaline hydrogen production. Benefiting from the strong interfacial interactions among POMs, Ni atoms, and PTM substrates, as well as unique POM-Ni quantum dot structures, the optimized POMs-Ni@PTM electrocatalyst exhibits a remarkable alkaline HER performance with an overpotential (η10) of 30.1 mV to reach a current density of 10 mA cm-2, which is much better than those of bare Ni decorated porous titanium mesh (Ni@PTM) (η10 = 171.1 mV) and POM decorated porous titanium mesh (POMs@PTM) electrocatalysts (η10 = 493.6 mV), comparable to that of the commercial 20 wt% platinum/carbon (20% Pt/C) electrocatalyst (η10 = 20 mV). Moreover, the optimized POMs-Ni@PTM electrocatalyst demonstrates excellent stability under continuous alkaline water-splitting at a current density of ∼100 mA cm-2 for 100 h, demonstrating great potential for its practical application.

2.
Int J Biol Macromol ; 192: 369-378, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34634329

ABSTRACT

Trichothecene toxins cause serious hazard towards human health and economical crops. However, there are no sufficient molecular strategies to reduce the hazard of trichothecene toxins. Thus it is urgent to exploit novel approaches to control the hazard of trichothecenes. In this study, four trichothecene toxin-resistance genes including mfs1, GNAT1, TRP1 and tri12 in Paramyrothecium roridum were excavated based on genome sequencing results, and then expressed in toxin-sensitive Saccharomyces cerevisiae BJ5464, the toxin resistance genes pdr5, pdr10 and pdr15 of which were firstly knocked out simultaneously by the introduction of TAA stop codon employing CRISPR/Cas9 system. Therefore, three novel hazardous toxin-resistance genes mfs1, GNAT1, TRP1 in P. roridum were firstly excavated by the co-incubation of DON toxin and toxin resistant genes-containing BJ5464 strains. The in vitro function and properties of novel toxin-resistance genes coding proteins including GNAT1, MFS1 and TRP1 were identified by heterologous expression and cellular location analysis as well as in vitro biochemical reaction. The excavation of novel trichothecene toxin-resistance genes provide novel molecular clues for controlling the harm of trichothecenes, meanwhile, this study will also pave a new way for the yield improvement of trichothecenes by heterologous expression to facilitate the development of trichothecenes as anti-tumor lead compounds.


Subject(s)
Antibiosis , Fungal Proteins/metabolism , Hypocreales/metabolism , Toxins, Biological/antagonists & inhibitors , Trichothecenes/antagonists & inhibitors , Antibiosis/genetics , Fungal Proteins/genetics , Gene Expression , Genetic Loci , Hypocreales/genetics , Recombinant Fusion Proteins , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Trichothecenes/metabolism
3.
Toxins (Basel) ; 12(6)2020 06 23.
Article in English | MEDLINE | ID: mdl-32585939

ABSTRACT

Macrocyclic trichothecenes are an important group of trichothecenes bearing a large ring. Despite the fact that many of trichothecenes are of concern in agriculture, food contamination, health care and building protection, the macrocyclic ones are becoming the research hotspot because of their diversity in structure and biologic activity. Several researchers have declared that macrocyclic trichothecenes have great potential to be developed as antitumor agents, due to the plenty of their compounds and bioactivities. In this review we summarize the newly discovered macrocyclic trichothecenes and their bioactivities over the last decade, as well as identifications of genes tri17 and tri18 involved in the trichothecene biosynthesis and putative biosynthetic pathway. According to the search results in database and phylogenetic trees generated in the review, the species of the genera Podostroma and Monosporascus would probably be great sources for producing macrocyclic trichothecenes. Moreover, we propose that the macrocyclic trichothecene roridin E could be formed via acylation or esterification of the long side chain linked with C-4 to the hydroxyl group at C-15, and vice versa. More assays and evidences are needed to support this hypothesis, which would promote the verification of the proposed pathway.


Subject(s)
Fungi/metabolism , Trichothecenes/metabolism , Animals , Biosynthetic Pathways , Fungi/genetics , Gene Expression Regulation, Fungal , Humans , Trichothecenes/pharmacology
4.
J Agric Food Chem ; 68(3): 818-825, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31845578

ABSTRACT

ß-Mannanase was expressed in Thermoanaerobacterium aotearoense SCUT27 induced by locust bean gum (LBG). The open reading frame encoding a GH26 ß-mannanase was identified and encoded a preprotein of 515 amino acids with a putative signal peptide. The enzyme without a signal sequence (Man25) was overexpressed in Escherichia coli with a specific activity of 1286.2 U/mg. Moreover, a facile method for ß-mannanase activity screening was established based on agar plates. The optimum temperature for the purified Man25 using LBG as a substrate was 55 °C. The catalytic activity and thermostability of Man25 displayed a strong dependence on calcium ions. Through saturation mutagenesis at the putative Ca2+ binding sites in Man25, the best mutant ManM3-3 (D143A) presented improvements in thermostability with 3.6-fold extended half-life at 55 °C compared with that of the wild-type. The results suggest that mutagenesis at metal binding sites could be an efficient approach to increase enzyme thermostability.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Thermoanaerobacterium/enzymology , beta-Mannosidase/chemistry , Bacterial Proteins/metabolism , Cloning, Molecular , Enzyme Stability , Escherichia coli/genetics , Gene Expression , Hydrogen-Ion Concentration , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Temperature , Thermoanaerobacterium/chemistry , Thermoanaerobacterium/genetics , beta-Mannosidase/genetics , beta-Mannosidase/metabolism
5.
Toxins (Basel) ; 12(1)2019 12 18.
Article in English | MEDLINE | ID: mdl-31861315

ABSTRACT

Marine toxins cause great harm to human health through seafood, therefore, it is urgent to exploit new marine toxins detection methods with the merits of high sensitivity and specificity, low detection limit, convenience, and high efficiency. Aptasensors have emerged to replace classical detection methods for marine toxins detection. The rapid development of molecular biological approaches, sequencing technology, material science, electronics and chemical science boost the preparation and application of aptasensors. Taken together, the aptamer-based biosensors would be the best candidate for detection of the marine toxins with the merits of high sensitivity and specificity, convenience, time-saving, relatively low cost, extremely low detection limit, and high throughput, which have reduced the detection limit of marine toxins from nM to fM. This article reviews the detection of marine toxins by aptamer-based biosensors, as well as the selection approach for the systematic evolution of ligands by exponential enrichment (SELEX), the aptamer sequences. Moreover, the newest aptasensors and the future prospective are also discussed, which would provide thereotical basis for the future development of marine toxins detection by aptasensors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques/instrumentation , Marine Toxins/analysis , Animals , Biosensing Techniques/methods , Humans , Ligands , Limit of Detection , SELEX Aptamer Technique
6.
Int J Mol Sci ; 20(23)2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31816858

ABSTRACT

Wheat yield is greatly reduced because of the occurrence of leaf spot diseases. Bipolaris sorokiniana is the main pathogenic fungus in leaf spot disease. In this study, B. sorokiniana from wheat leaf (W-B. sorokiniana) showed much stronger pathogenicity toward wheat than endophytic B. sorokiniana from Pogostemon cablin (P-B. sorokiniana). The transcriptomes and metabolomics of the two B. sorokiniana strains and transcriptomes of B. sorokiniana-infected wheat leaves were comparatively analyzed. In addition, the expression levels of unigenes related to pathogenicity, toxicity, and cell wall degradation were predicted and validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. Results indicated that pathogenicity-related genes, especially the gene encoding loss-of-pathogenicity B (LopB) protein, cell wall-degrading enzymes (particularly glycosyl hydrolase-related genes), and killer and Ptr necrosis toxin-producing related unigenes in the W-B. sorokiniana played important roles in the pathogenicity of W-B. sorokiniana toward wheat. The down-regulation of cell wall protein, photosystem peptide, and rubisco protein suggested impairment of the phytosynthetic system and cell wall of B. sorokiniana-infected wheat. The up-regulation of hydrolase inhibitor, NAC (including NAM, ATAF1 and CUC2) transcriptional factor, and peroxidase in infected wheat tissues suggests their important roles in the defensive response of wheat to W-B. sorokiniana. This is the first report providing a comparison of the transcriptome and metabolome between the pathogenic and endophytic B. sorokiniana strains, thus providing a molecular clue for the pathogenic mechanism of W-B. sorokiniana toward wheat and wheat's defensive response mechanism to W-B. sorokiniana. Our study could offer molecular clues for controlling the hazard of leaf spot and root rot diseases in wheat, thus improving wheat yield in the future.


Subject(s)
Ascomycota/genetics , Ascomycota/metabolism , Gene Expression Profiling , Metabolomics , Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/genetics , Triticum/microbiology , Ascomycota/pathogenicity , Ascomycota/ultrastructure , Cell Wall/metabolism , Gene Expression Regulation, Plant , Gene Ontology , Genome, Plant , Molecular Sequence Annotation , Mycelium/ultrastructure , Mycotoxins/metabolism , Secondary Metabolism/genetics , Transcriptome
7.
Microb Cell Fact ; 18(1): 195, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31699116

ABSTRACT

BACKGROUND: The biological synthesis of high value compounds in industry through metabolically engineered microorganism factories has received increasing attention in recent years. Valencene is a high value ingredient in the flavor and fragrance industry, but the low concentration in nature and high cost of extraction limits its application. Saccharomyces cerevisiae, generally recognized as safe, is one of the most commonly used gene expression hosts. Construction of S. cerevisiae cell factory to achieve high production of valencene will be attractive. RESULTS: Valencene was successfully biosynthesized after introducing valencene synthase into S. cerevisiae BJ5464. A significant increase in valencene yield was observed after down-regulation or knock-out of squalene synthesis and other inhibiting factors (such as erg9, rox1) in mevalonate (MVA) pathway using a recyclable CRISPR/Cas9 system constructed in this study through the introduction of Cre/loxP. To increase the supplement of the precursor farnesyl pyrophosphate (FPP), all the genes of FPP upstream in MVA pathway were overexpressed in yeast genome. Furthermore, valencene expression cassettes containing different promoters and terminators were compared, and PHXT7-VS-TTPI1 was found to have excellent performance in valencene production. Finally, after fed-batch fermentation in 3 L bioreactor, valencene production titer reached 539.3 mg/L with about 160-fold improvement compared to the initial titer, which is the highest reported valencene yield. CONCLUSIONS: This study achieved high production of valencene in S. cerevisiae through metabolic engineering and optimization of expression cassette, providing good example of microbial overproduction of valuable chemical products. The construction of recyclable plasmid was useful for multiple gene editing as well.


Subject(s)
Metabolic Engineering/methods , Organisms, Genetically Modified/metabolism , Saccharomyces cerevisiae , Sesquiterpenes/metabolism , CRISPR-Cas Systems/genetics , Plasmids/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
8.
Biomolecules ; 10(1)2019 12 29.
Article in English | MEDLINE | ID: mdl-31905743

ABSTRACT

Gliotoxin is an important epipolythiodioxopiperazine, which was biosynthesized by the gli gene cluster in Aspergillus genus. However, the regulatory mechanism of gliotoxin biosynthesis remains unclear. In this study, a novel Zn2Cys6 transcription factor DcGliZ that is responsible for the regulation of gliotoxin biosynthesis from the deep-sea-derived fungus Dichotomomyces cejpii was identified. DcGliZ was expressed in Escherichia coli and effectively purified from inclusion bodies by refolding. Using electrophoretic mobility shift assay, we demonstrated that purified DcGliZ can bind to gliG, gliM, and gliN promoter regions in the gli cluster. Furthermore, the binding kinetics and affinity of DcGliZ protein with different promoters were measured by surface plasmon resonance assays, and the results demonstrated the significant interaction of DcGliZ with the gliG, gliM, and gliN promoters. These new findings would lay the foundation for the elucidation of future gliotoxin biosynthetic regulation mechanisms in D. cejpii.


Subject(s)
Fungi/genetics , Gliotoxin/biosynthesis , Multigene Family/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Fungi/metabolism , Gliotoxin/chemistry
9.
RSC Adv ; 9(52): 30171-30181, 2019 Sep 23.
Article in English | MEDLINE | ID: mdl-35530214

ABSTRACT

(+)-Valencene and (+)-nootkatone are high value-added sesquiterpenoids found in grapefruit. The synthesis of (+)-nootkatone by chemical oxidation from (+)-valencene cannot meet the increasing demand in natural aromatics markets. Development of a viable bioprocess using microorganisms is attractive. According to the yields of ß-nootkatol and (+)-nootkatone by strains harboring different expression cassettes in the resting cell assay, premnaspirodiene oxygenase from Hyoscyamus muticus (HPO), cytochrome P450 reductase from Arabidopsis thaliana (AtCPR) and alcohol dehydrogenase (ADH1) from Saccharomyces cerevisiae were finally selected and overexpressed in CEN·PK2-1Ca, yielding ß-nootkatol and (+)-nootkatone with 170.5 and 45.6 mg L-1 ethyl acetate, respectively. A combinational engineering strategy including promoter change, regulator ROX1 knockout, squalene pathway inhibition, and tHMGR overexpression was performed to achieve de novo (+)-valencene production. Subsequent culture investigations found that galactose as the induced carbon source and a lower temperature (25 °C) were beneficial to target accumulation. Also, replacing the inducible promoters (GAL1) of HPO and AtCPR with constitutive promoters (HXT7 and CYC1) dramatically increased the ß-nootkatol accumulation from 108.2 to 327.8 mg L-1 ethyl acetate in resting-cell experiments using (+)-valencene as a substrate. Finally, the total terpenoid titer of the engineered strain of PK2-25 using glucose as a carbon source was improved to 157.8 mg L-1 cell culture, which was 56 times the initial value. We present a new candidate for production of (+)-valencene and its related sesquiterpenoids with attraction for industry.

10.
Article in English | MEDLINE | ID: mdl-32039165

ABSTRACT

Epothilones are a kind of macrolides with strong cytotoxicity toward cancer cells and relatively lower side effects compared with taxol. Epothilone B derivate ixabepilone has been used for the clinical treatment of advanced breast cancer. However, the low yield of epothilones and the difficulty in the genetic manipulation of Sorangium cellulosum limited their wider application. Transcription activator-like effectors-Trancriptional factor (TALE-TF)-VP64 and clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9-VP64 have been demonstrated as effective systems for the transcriptional improvement. In this study, a promoter for the epothilone biosynthesis cluster was obtained and the function has been verified. The TALE-TF-VP64 and CRISPR/dcas9-VP64 target P3 promoter were electroporated into S. cellulosum strain So ce M4, and the transcriptional levels of epothilone biosynthesis-related genes were significantly upregulated. The yield of epothilone B was improved by 2.89- and 1.53-fold by the introduction of recombinant TALE-TF-VP64-P3 and dCas9-VP64-P3 elements into So ce M4, respectively. The epothilone D yield was also improved by 1.12- and 2.18-fold in recombinant dCas9-So ce M4 and TALE-VP64 strains, respectively. The transcriptional regulation mechanism of TALE-TF-VP64 and the competition mechanism with endogenous transcriptional factor were investigated by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP), demonstrating the combination of the P3 promoter and TALE-TF element and the competition between TALE-TF and endogenous transcriptional protein. This is the first report on the transcriptional regulation of the epothilone biosynthetic gene cluster in S. cellulosum using the TALE-TF and dCas9-VP64 systems, and the regulatory mechanism of the TALE-TF system for epothilone biosynthesis in S. cellulosum was also firstly revealed, thus shedding light on the metabolic engineering of S. cellulosum to improve epothilone yields substantially and promoting the application of epothilones in the biomedical industry.

11.
Int J Mol Sci ; 19(7)2018 Jun 29.
Article in English | MEDLINE | ID: mdl-29966253

ABSTRACT

Gliotoxin, produced by fungi, is an epipolythiodioxopiperazine (ETP) toxin with bioactivities such as anti-liver fibrosis, antitumor, antifungus, antivirus, antioxidation, and immunoregulation. Recently, cytotoxic gliotoxins were isolated from a deep-sea-derived fungus, Dichotomomyces cejpii. However, the biosynthetic pathway for gliotoxins in D. cejpii remains unclear. In this study, the transcriptome of D. cejpii was sequenced using an Illumina Hiseq 2000. A total of 19,125 unigenes for D. cejpii were obtained from 9.73 GB of clean reads. Ten genes related to gliotoxin biosynthesis were annotated. The expression levels of gliotoxin-related genes were detected through quantitative real-time polymerase chain reaction (qRT-PCR). The GliG gene, encoding a glutathione S-transferase (DC-GST); GliI, encoding an aminotransferase (DC-AI); and GliO, encoding an aldehyde reductase (DC-AR), were cloned and expressed, purified, and characterized. The results suggested the important roles of DC-GST, DC-AT, and DC-AR in the biosynthesis of gliotoxins. Our study on the genes related to gliotoxin biosynthesis establishes a molecular foundation for the wider application of gliotoxins from D. cejpii in the biomedical industry in the future.


Subject(s)
Fungi/genetics , Gliotoxin/biosynthesis , Transcriptome/genetics , Aldehyde Reductase/genetics , Fungi/metabolism , Gene Expression Profiling/methods , Glutathione Transferase/genetics
12.
Sci Rep ; 7(1): 10088, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855699

ABSTRACT

As a nongenetic engineering technique, adaptive evolution is an effective and easy-to-operate approach to strain improvement. In this work, a commercial Thermoanaerobacterium aotearoense SCUT27/Δldh-G58 was successfully isolated via sequential batch fermentation with step-increased carbon concentrations. Mutants were isolated under selective high osmotic pressures for 58 passages. The evolved isolate rapidly catabolized sugars at high concentrations and subsequently produced ethanol with good yield. A 1.6-fold improvement of ethanol production was achieved in a medium containing 120 g/L of carbon substrate using the evolved strain, compared to the start strain. The analysis of transcriptome and intracellular solute pools suggested that the adaptive evolution altered the synthesis of some compatible solutes and activated the DNA repair system in the two Thermoanaerobacterium sp. evolved strains. Overall, the results indicated the potential of adaptive evolution as a simple and effective tool for the modification and optimization of industrial microorganisms.


Subject(s)
Adaptation, Biological/genetics , Biotechnology/methods , Osmotic Pressure/physiology , Thermoanaerobacterium/metabolism , Biological Evolution , Carbohydrate Metabolism/genetics , Ethanol/metabolism , Fermentation , Mutation , Thermoanaerobacterium/genetics
13.
Int J Mol Sci ; 18(3)2017 Feb 25.
Article in English | MEDLINE | ID: mdl-28245611

ABSTRACT

Myrothecium roridum is a plant pathogenic fungus that infects different crops and decreases the yield of economical crops, including soybean, cotton, corn, pepper, and tomato. Until now, the pathogenic mechanism of M. roridum has remained unclear. Different types of trichothecene mycotoxins were isolated from M. roridum, and trichothecene was considered as a plant pathogenic factor of M. roridum. In this study, the transcriptome of M. roridum in different incubation durations was sequenced using an Illumina Hiseq 2000. A total of 35,485 transcripts and 25,996 unigenes for M. roridum were obtained from 8.0 Gb clean reads. The protein-protein network of the M. roridum transcriptome indicated that the mitogen-activated protein kinases signal pathway also played an important role in the pathogenicity of M. roridum. The genes related to trichothecene biosynthesis were annotated. The expression levels of these genes were also predicted and validated through quantitative real-time polymerase chain reaction. Tri5 gene encoding trichodiene synthase was cloned and expressed, and the purified trichodiene synthase was able to catalyze farnesyl pyrophosphate into different kinds of sesquiterpenoids.Tri4 and Tri11 genes were expressed in Escherichia coli, and their corresponding enzymatic properties were characterized. The phylogenetic tree of trichodiene synthase showed a great discrepancy between the trichodiene synthase from M. roridum and other species. Our study on the genes related to trichothecene biosynthesis establishes a foundation for the M. roridum hazard prevention, thus improving the yields of economical crops.


Subject(s)
Ascomycota/genetics , Ascomycota/metabolism , Gene Expression Profiling , Gene Expression Regulation, Fungal , Mycotoxins/biosynthesis , Transcriptome , Trichothecenes/biosynthesis , Biosynthetic Pathways , Catalysis , Computational Biology/methods , Gene Ontology , High-Throughput Nucleotide Sequencing , Microsatellite Repeats , Mitogen-Activated Protein Kinases/metabolism , Molecular Sequence Annotation , Phylogeny , Plant Diseases/microbiology , Protein Interaction Mapping , Protein Interaction Maps , Signal Transduction
14.
PLoS One ; 10(11): e0142121, 2015.
Article in English | MEDLINE | ID: mdl-26540271

ABSTRACT

The strictly anaerobic, Gram-positive bacterium, Thermoanaerobacterium aotearoense SCUT27, is capable of producing ethanol, hydrogen and lactic acid by directly fermenting glucan, xylan and various lignocellulosically derived sugars. By using non-metabolizable and metabolizable sugars as substrates, we found that cellobiose, galactose, arabinose and starch utilization was strongly inhibited by the existence of 2-deoxyglucose (2-DG). However, the xylose and mannose consumptions were not markedly affected by 2-DG at the concentration of one-tenth of the metabolizable sugar. Accordingly, T. aotearoense SCUT27 could consume xylose and mannose in the presence of glucose. The carbon catabolite repression (CCR) related genes, ccpA, ptsH and hprK were confirmed to exist in T. aotearoense SCUT27 through gene cloning and protein characterization. The highly purified Histidine-containing Protein (HPr) could be specifically phosphorylated at Serine 46 by HPr kinase/phosphatase (HPrK/P) with no need to add fructose-1,6-bisphosphate (FBP) or glucose-6-phosphate (Glc-6-P) in the reaction mixture. The specific protein-interaction of catabolite control protein A (CcpA) and phosphorylated HPr was proved via affinity chromatography in the absence of formaldehyde. The equilibrium binding constant (KD) of CcpA and HPrSerP was determined as 2.22 ± 0.36 nM by surface plasmon resonance (SPR) analysis, indicating the high affinity between these two proteins.


Subject(s)
Bacterial Proteins/genetics , Carbon/metabolism , Catabolite Repression/genetics , Metabolism/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Protein Serine-Threonine Kinases/genetics , Thermoanaerobacterium/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Bacterial/genetics , Glucose-6-Phosphate/genetics , Histidine/genetics
15.
Bioresour Technol ; 198: 47-54, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26363501

ABSTRACT

In this study, an advanced biorefinery technology that uses mixed bakery waste has been developed to produce l-lactic acid using an adaptively evolved Thermoanaerobacterium aotearoense LA1002-G40 in a non-sterilized system. Under these conditions, mixed bakery waste was directly hydrolysed by Aspergillus awamori and Aspergillus oryzae, resulting in a nutrient-rich hydrolysate containing 83.6g/L glucose, 9.5 g/L fructose and 612 mg/L free amino nitrogen. T. aotearoense LA1002-G40 was evaluated and then adaptively evolved to grow in this nutrient-rich hydrolysate. Using a 5-L fermenter, the overall lactic acid production from mixed bakery waste was 0.18 g/g with a titer, productivity and yield of 78.5 g/L, 1.63 g/L/h and 0.85 g/g, respectively. This is an innovative procedure involving a complete bioconversion process for l-lactic acid produced from mixed bakery waste under non-sterilized conditions. The proposed process could be potentially applied to turn food waste into l-lactic acid in an economically feasible way.


Subject(s)
Fermentation , Hydrolysis , Lactic Acid/biosynthesis , Thermoanaerobacterium/metabolism , Waste Products , Aspergillus , Bacteria, Aerobic , Bioreactors , Food , Glucose , Nitrogen
16.
Biotechnol Biofuels ; 7(1): 119, 2014.
Article in English | MEDLINE | ID: mdl-25184001

ABSTRACT

BACKGROUND: Hydrogen is regarded as an attractive future energy carrier for its high energy content and zero CO2 emission. Currently, the majority of hydrogen is generated from fossil fuels. However, from an environmental perspective, sustainable hydrogen production from low-cost lignocellulosic biomass should be considered. Thermophilic hydrogen production is attractive, since it can potentially convert a variety of biomass-based substrates into hydrogen at high yields. RESULTS: Sugarcane bagasse (SCB) was used as the substrate for hydrogen production by Thermoanaerobacterium aotearoense SCUT27/Δldh. The key parameters of acid hydrolysis were studied through the response surface methodology. The hydrogen production was maximized under the conditions of 2.3% of H2SO4 for 114.2 min at 115°C. Using these conditions, a best hydrogen yield of 1.86 mol H2/mol total sugar and a hydrogen production rate (HPR) of 0.52 L/L · h were obtained from 2 L SCB hydrolysates in a 5-L fermentor, showing a superior performance to the results reported in the literature. Additionally, no obvious carbon catabolite repression (CCR) was observed during the fermentation using the multi-sugars as substrates. CONCLUSIONS: Considering these advantages and theimpressive HPR, the potential of hydrogen production using T. aotearoense SCUT27/Δldh is intriguing. Thermophilic, anaerobic fermentation using SCB hydrolysates as the medium by this strain would be a practical and eco-friendly process.

17.
Biotechnol Biofuels ; 6(1): 124, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23985133

ABSTRACT

BACKGROUND: Efficient conversion of lignocellulosic biomass to optically pure lactic acid is a key challenge for the economical production of biodegradable poly-lactic acid. A recently isolated strain, Thermoanaerobacterium aotearoense SCUT27, is promising as an efficient lactic acid production bacterium from biomass due to its broad substrate specificity. Additionally, its strictly anaerobic and thermophilic characteristics suppress contamination from other microoragnisms. Herein, we report the significant improvements of concentration and yield in lactic acid production from various lignocellulosic derived sugars, achieved by the carbon flux redirection through homologous recombination in T. aotearoense SCUT27. RESULTS: T. aotearoense SCUT27 was engineered to block the acetic acid formation pathway to improve the lactic acid production. The genetic manipulation resulted in 1.8 and 2.1 fold increase of the lactic acid yield using 10 g/L of glucose or 10 g/L of xylose as substrate, respectively. The maximum l-lactic acid yield of 0.93 g/g glucose with an optical purity of 99.3% was obtained by the engineered strain, designated as LA1002, from 50 g/L of substrate, which is very close to the theoretical value (1.0 g/g of glucose). In particular, LA1002 produced lactic acid at an unprecedented concentration up to 3.20 g/L using 10 g/L xylan as the single substrate without any pretreatment after 48 h fermentation. The non-sterilized fermentative production of l-lactic acid was also carried out, achieving values of 44.89 g/L and 0.89 g/g mixed sugar for lactic acid concentration and yield, respectively. CONCLUSIONS: Blocking acetic acid formation pathway in T. aotearoense SCUT27 increased l-lactic acid production and yield dramatically. To our best knowledge, this is the best performance of fermentation on lactic acid production using xylan as the sole carbon source, considering the final concentration, yield and fermentation time. In addition, it should be mentioned that the performance of non-sterilized simultaneous fermentation from glucose and xylose was very close to that of normal sterilized cultivation. All these results used the mutant strain, LA1002, indicated that it is a new promising candidate for the effective production of optically pure l-lactic acid from lignocellulosic biomass.

18.
Comput Struct Biotechnol J ; 2: e201209017, 2012.
Article in English | MEDLINE | ID: mdl-24688658

ABSTRACT

Enzymes are protein molecules functioning as specialized catalysts for chemical reactions. They have contributed greatly to the traditional and modern chemical industry by improving existing processes. In this article, we first give a survey of representative industrial applications of enzymes, focusing on the technical applications, feed industry, food processing and cosmetic products. The recent important developments and applications of enzymes in industry are reviewed. Then large efforts are dedicated to the worldwide enzyme market from the demand and production perspectives. Special attention is laid on the Chinese enzyme market. Although enzyme applications are being developed in full swing, breakthroughs are needed to overcome their weaknesses in maintaining activities during the catalytic processes. Strategies of metagomic analysis, cell surface display technology and cell-free system might give valuable solutions in novel enzyme exploiting and enzyme engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...