Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(17): 11165-11182, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38626338

ABSTRACT

Glioblastoma (GBM) is an aggressive brain cancer that is highly resistant to treatment including chimeric antigen receptor (CAR)-T cells. Tumor-associated microglia and macrophages (TAMs) are major contributors to the immunosuppressive GBM microenvironment, which promotes tumor progression and treatment resistance. Hence, the modulation of TAMs is a promising strategy for improving the immunotherapeutic efficacy of CAR-T cells against GBM. Molecularly targeting drug pexidartinib (PLX) has been reported to re-educate TAMs toward the antitumorigenic M1-like phenotype. Here, we developed a cell-drug integrated technology to reversibly conjugate PLX-containing liposomes (PLX-Lip) to CAR-T cells and establish tumor-responsive integrated CAR-T cells (PLX-Lip/AZO-T cells) as a combination therapy for GBM. We used a mouse model of GBM to show that PLX-Lip was stably maintained on the surface of PLX-Lip/AZO-T cells in circulation and these cells could transmigrate across the blood-brain barrier and deposit PLX-Lip at the tumor site. The uptake of PLX-Lip by TAMs effectively re-educated them into the M1-like phenotype, which in turn boosted the antitumor function of CAR-T cells. GBM tumor growth was completely eradicated in 60% of the mice after receiving PLX-Lip/AZO-T cells and extended their overall survival time beyond 50 days; in comparison, the median survival time of mice in other treatment groups did not exceed 35 days. Overall, we demonstrated the successful fusion of CAR-T cells and small-molecule drugs with the cell-drug integrated technology. These integrated CAR-T cells provided a superior combination strategy for GBM treatment and presented a reference for the construction of integrated cell-based drugs.


Subject(s)
Aminopyridines , Brain Neoplasms , Glioblastoma , Microglia , Receptors, Chimeric Antigen , Glioblastoma/therapy , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/drug therapy , Animals , Mice , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Humans , Microglia/drug effects , Microglia/metabolism , Microglia/immunology , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Liposomes/chemistry , Pyrroles/chemistry , Pyrroles/pharmacology , Immunotherapy , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cell Line, Tumor , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Immunotherapy, Adoptive , T-Lymphocytes/immunology , T-Lymphocytes/drug effects
2.
Eur J Med Chem ; 247: 115073, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36603511

ABSTRACT

Successful T-cell based immunotherapy usually depends on the activation of T cells. Most of commonly used methods for assessing T cell activity rely on the antibody-based technology, which focus on detecting protein-centered activation markers, including CD25, cytokines and so on. However, these methods always involve tedious sample-preparation process, labor-consuming and costly, which could not be utilized in real-time detection. The T cell receptor (TCR) clustering is another kind of essential T cell activation marker on the membrane, which increases during the activation state of T cells. We herein developed a cholesterol derived aggregation-induced emission (AIE) fluorescent probe (R-TPE-PEG-Chol) for detecting T cell activation in real-time. Five probes were first designed and synthesized and among them COOH-TPE-PEG-Chol displayed the best imaging effects, which had no significant impact on the key physiological functions of T cells. In addition, we have proved that COOH-TPE-PEG-Chol was introduced onto the naïve T cell membrane in its molecularly dissolved form without fluorescent emission. While during T cell activation, the formation of TCR nanoclusters would induce aggregation of membrane cholesterol, which could provoke the fluorescence signal of the COOH-TPE-PEG-Chol due to the AIE characteristic. Moreover, the enhancement of the fluorescence intensity was positively related to the activation state of T cells. Our study demonstrated the concept of cholesterol-derived AIE fluorescent probes for deciphering the spatiotemporal arrangements of TCR on the membrane during T cell activation, and consequently provided a novel and complementary strategy for detecting T cell activation in real-time.


Subject(s)
Cholesterol , Polyethylene Glycols , Fluorescence , Receptors, Antigen, T-Cell , Fluorescent Dyes/pharmacology
3.
ACS Nano ; 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36595464

ABSTRACT

Immune checkpoint inhibitors (ICIs) have displayed potential efficacy in triple-negative breast cancer (TNBC) treatment, while only a minority of patients benefit from ICI therapy currently. Although activation of the innate immune stimulator of interferon genes (STING) pathway potentiates antitumor immunity and thus sensitizes tumors to ICIs, the efficient tumor penetration of STING agonists remains critically challenging. Herein, we prepare a tumor-penetrating neotype neutrophil cytopharmaceutical (NEs@STING-Mal-NP) with liposomal STING agonists conjugating on the surface of neutrophils, which is different from the typical neutrophil cytopharmaceutical that loads drugs inside the neutrophils. We show NEs@STING-Mal-NP that inherit the merits of neutrophils including proactive tumor vascular extravasation and tissue penetration significantly boost the tumor penetration of STING agonists. Moreover, the backpacked liposomal STING agonists can be released in response to hyaluronidase rich in the tumor environment, leading to enhanced uptake by tumor-infiltrating immune cells and tumor cells. Thus, NEs@STING-Mal-NP effectively activate the STING pathway and reinvigorate the tumor environment through converting macrophages and neutrophils to antitumor phenotypes, promoting the maturation of dendritic cells, and enhancing the infiltration and tumoricidal ability of T cells. Specifically, this cytopharmaceutical displays a significant inhibition on tumor growth and prolongs the survival of TNBC-bearing mice when combined with ICIs. We demonstrate that neutrophils serve as promising vehicles for delivering STING agonists throughout solid tumors and the developed neutrophil cytopharmaceuticals with backpacked STING agonists exhibit huge potential in boosting the immunotherapy of ICIs.

SELECTION OF CITATIONS
SEARCH DETAIL
...