Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Int J Biol Sci ; 20(6): 2111-2129, 2024.
Article in English | MEDLINE | ID: mdl-38617529

ABSTRACT

Gaucher disease (GD), a rare hereditary lysosomal storage disorder, occurs due to a deficiency in the enzyme ß-glucocerebrosidase (GCase). This deficiency leads to the buildup of substrate glucosylceramide (GlcCer) in macrophages, eventually resulting in various complications. Among its three types, GD2 is particularly severe with neurological involvements. Current treatments, such as enzyme replacement therapy (ERT), are not effective for GD2 and GD3 due to their inability to cross the blood-brain barrier (BBB). Other treatment approaches, such as gene or chaperone therapies are still in experimental stages. Additionally, GD treatments are costly and can have certain side effects. The successful use of messenger RNA (mRNA)-based vaccines for COVID-19 in 2020 has sparked interest in nucleic acid-based therapies. Remarkably, mRNA technology also offers a novel approach for protein replacement purposes. Additionally, self-amplifying RNA (saRNA) technology shows promise, potentially producing more protein at lower doses. This review aims to explore the potential of a cost-effective mRNA/saRNA-based approach for GD therapy. The use of GCase-mRNA/saRNA as a protein replacement therapy could offer a new and promising direction for improving the quality of life and extending the lifespan of individuals with GD.


Subject(s)
Gaucher Disease , Glucosylceramidase , Humans , Glucosylceramidase/genetics , Gaucher Disease/genetics , Gaucher Disease/therapy , RNA, Messenger/genetics , COVID-19 Vaccines , Quality of Life
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1446-1454, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621928

ABSTRACT

This study investigated the mechanism of Yuxuebi Tablets(YXB) in the treatment of synovial inflammation in rheumatoid arthritis(RA) based on transcriptomic analysis. Transcriptome sequencing technology was employed to analyze the gene expression profiles of joint tissues from normal rats, collagen-induced arthritis(CIA) rats(an RA model), and YXB-treated rats. Common diffe-rentially expressed genes(DEGs) were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. RA synovial inflammation-related target genes were retrieved from the OMIM and GeneCards databases. Venny 2.1 software was used to identify the intersection of YXB target genes and RA synovial inflammation-related target genes, and GO and KEGG enrichment analyses were performed on the intersecting target genes. Immunohistochemistry was used to assess the protein expression levels of the inflammatory factors interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in rat joint tissues. Western blot analysis was employed to measure the expression levels of key proteins in the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway. A total of 2 058 DEGs were identified by intersecting the genes from the normal group vs model group and the model group vs YXB treatment group. A search in OMIM and GeneCards databases yielded 1 102 RA synovial inflammation-related target genes. After intersecting with the DEGs in the YXB treatment group, 204 intersecting target genes were identified, primarily involving biological processes such as immune response, signal transduction, and inflammatory response; cellular components including plasma membrane, extracellular space, and extracellular region; molecular functions like protein binding, identical protein binding, and receptor binding. These target genes were mainly enriched in signaling pathways such as PI3K/Akt, cytokine-cytokine receptor interaction, and Janus kinase/signal transducer and activator of transcription(JAK/STAT). Western blot results showed that YXB at low, medium, and high doses could significantly inhibit the expression levels of key proteins in the PI3K/Akt signaling pathway in rat joint tissues in a dose-dependent manner. Immunohistochemistry further confirmed these findings, showing that YXB not only suppressed the protein expression levels of the inflammatory factors IL-1ß and TNF-α in the joint synovial tissues of CIA rats, but also inhibited p-Akt protein expression. In conclusion, this study used transcriptomic analysis to uncover the key mechanisms of YXB in inhibiting synovial inflammation and alleviating the progression of RA, with a focus on its role in suppressing the PI3K/Akt signaling pathway.


Subject(s)
Arthritis, Rheumatoid , Proto-Oncogene Proteins c-akt , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Synovial Membrane , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Gene Expression Profiling/methods
3.
Plant Physiol ; 195(1): 190-212, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38417841

ABSTRACT

Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.


Subject(s)
Arabidopsis , Flowers , Gene Expression Regulation, Plant , Flowers/genetics , Flowers/physiology , Arabidopsis/genetics , Arabidopsis/physiology , Signal Transduction/genetics , Adaptation, Physiological/genetics , Genes, Plant , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Time Factors
4.
Plant Cell Physiol ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372617

ABSTRACT

The polyhydroxylated steroid phytohormone brassinosteroids (BRs) control many aspects of plant growth, development and responses to environmental changes. Plasma membrane (PM) H+-ATPase, the well-known PM proton pump, is a central regulator in plant physiology, which mediates not only plant growth and development, but also adaptation to stresses. Recent studies highlight that PM H+-ATPase is at least partly regulated via the BR signaling. Firstly, the BR cell surface receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and multiple key components of BR signaling directly or indirectly influence PM H+-ATPase activity. Secondly, the SMALL AUXIN UP RNA (SAUR) gene family physically interacts with BRI1 to enhance organ development of Arabidopsis by activating PM H+-ATPase. Thirdly, RNA-sequencing (RNA-seq) assays showed that the expression of some SAUR genes is upregulated under the light or sucrose conditions, which is related to the phosphorylation state of the penultimate residue of PM H+-ATPase in a time-course manner. In this review, we describe the structural and functional features of PM H+-ATPase, and summarize recent progress toward understanding the regulatory mechanism of PM H+-ATPase by BRs, and briefly introduce how PM H+-ATPase activity is modulated by its own biterminal regions and the post-translational modifications.

5.
Eur J Radiol ; 171: 111301, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237522

ABSTRACT

OBJECTIVES: To investigate the clinical value of a novel deep-learning based CT reconstruction algorithm, artificial intelligence iterative reconstruction (AIIR), in diagnostic imaging of colorectal cancer (CRC). METHODS: This study retrospectively enrolled 217 patients with pathologically confirmed CRC. CT images were reconstructed with the AIIR algorithm and compared with those originally obtained with hybrid iterative reconstruction (HIR). Objective image quality was evaluated in terms of the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality was graded on the conspicuity of tumor margin and enhancement pattern as well as the certainty in diagnosing organ invasion and regional lymphadenopathy. In patients with surgical pathology (n = 116), the performance of diagnosing visceral peritoneum invasion was characterized using receiver operating characteristic (ROC) analysis. Changes of diagnostic thinking in diagnosing hepatic metastases were assessed through lesion classification confidence. RESULTS: The SNRs and CNRs on AIIR images were significantly higher than those on HIR images (all p < 0.001). The AIIR was scored higher for all subjective metrics (all p < 0.001) except for the certainty of diagnosing regional lymphadenopathy (p = 0.467). In diagnosing visceral peritoneum invasion, higher area under curve (AUC) of the ROC was found for AIIR than HIR (0.87 vs 0.77, p = 0.001). In assessing hepatic metastases, AIIR was found capable of correcting the misdiagnosis and improving the diagnostic confidence provided by HIR (p = 0.01). CONCLUSIONS: Compared to HIR, AIIR offers better image quality, improves the diagnostic performance regarding CRC, and thus has the potential for application in routine abdominal CT.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Lymphadenopathy , Humans , Artificial Intelligence , Retrospective Studies , Radiation Dosage , Tomography, X-Ray Computed/methods , Algorithms , Colorectal Neoplasms/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods
6.
Protein Expr Purif ; 215: 106410, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38040273

ABSTRACT

Cytokeratin 19 fragment (CYFRA21-1) serves as a crucial tumor marker in the context of lung cancer patients, playing a pivotal role as a calibrator in the realm of in vitro diagnostics. Nevertheless, during practical application, it has come to light that the recombinantly synthesized full-length CYFRA21-1 antigen exhibits suboptimal stability at the requisite concentration, while the utilization of natural antigens incurs a substantial cost. To address this issue, our investigation harnessed a strategic approach whereby the soluble fragment of cytokeratin 19 (Aa244-400) was integrated into the pET32a vector, subsequently being expressed within E. coli through a fusion with the TrxA protein. This process involved induction of protein expression through 0.2 mM IPTG at 16 °C for a duration of 16 h. After induction, the target protein was purified through Ni affinity and ion exchange chromatography. Subsequent characterization of the targeted protein was executed through the SEC-HPLC technique. The attained CYFRA21-1 antigen, as generated within this study, was effectively incorporated into a chemiluminescence-based in vitro diagnostic detection kit. The results indicate that the fusion protein exhibited commendable reactivity and stability, manifesting a deviation of less than 10 % following incubation at 37 °C for 7 days. Importantly, the production yield achieved a notable magnitude of 300 mg/L, thus rendering it a cost-effective and scalable alternative to natural antigens for clinical diagnostic applications.


Subject(s)
Keratin-19 , Lung Neoplasms , Humans , Keratin-19/genetics , Keratin-19/analysis , Escherichia coli/genetics , Antigens, Neoplasm/genetics , Antigens, Neoplasm/analysis , Proteins
7.
Front Public Health ; 11: 1252741, 2023.
Article in English | MEDLINE | ID: mdl-37736088

ABSTRACT

Introduction: There is limited evidence regarding particulate matter (PM)'s short-term effects on pulmonary tuberculosis (PTB) hospital admission. Our study aimed to determine the short-term associations of the exposure to ambient PM with aerodynamic diameters <2.5 µm (PM2.5) and < 10 µm (PM10) with hospital admission for PTB in Hainan, a tropical province in China. Methods: We collected individual data on patients hospitalized with PTB, PM2.5, PM10, and meteorological data from 2016 to 2019 in Hainan Province, China. Conditional logistic regression models with a time-stratified case-crossover design were used to assess the short-term effects of PM2.5 and PM10 on hospital admission for PTB at a spatial resolution of 1 km × 1 km. Stratified analyses were performed according to age at admission, sex, marital status, administrative division, and season of admission. Results: Each interquartile range (IQR) increases in the concentrations of PM2.5 and PM10 were associated with 1.155 (95% confidence interval [CI]: 1.041-1.282) and 1.142 (95% CI: 1.033-1.263) hospital admission risks for PTB at lag 0-8 days, respectively. The stratified analyses showed that the effects of PM2.5 and PM10 were statistically significant for patients aged ≥65 years, males, married, and those residing in prefecture-level cities. Regarding seasonal differences, the associations between PM and hospital admission for PTB were statistically significant in the warm season but not in the cold season. The effect of PM2.5 was consistently stronger than that of PM10 in most subgroups. Conclusion: Short-term exposure to PM increases the risk of hospital admission for PTB. The potential impact of PM with smaller aerodynamic diameter is more detrimental. Our findings highlight the importance of reducing ambient PM level to alleviate the burden of PTB.


Subject(s)
Particulate Matter , Tuberculosis, Pulmonary , Male , Humans , Particulate Matter/adverse effects , Cross-Over Studies , China/epidemiology , Tuberculosis, Pulmonary/epidemiology , Hospitals
8.
J Integr Neurosci ; 22(5): 131, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37735134

ABSTRACT

BACKGROUND: Patients with post-stroke memory disorder (PSMD) have poor quality of life and it is necessary to identify more beneficial stimulation protocols for treatment with repetitive transcranial magnetic stimulation (rTMS). This meta-analysis was conducted to investigate the efficacy and safety of rTMS for improving memory performance, global cognition, and activities of daily living (ADL) among patients with PSMD. METHODS: The PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Chinese Biomedical Literature Database, Chinese National Knowledge Infrastructure, China Science and Technology Journal Database, and Wanfang databases were screened to identify relevant randomized controlled trials. The primary outcome was memory performance; secondary outcomes included global cognition, ADL, and adverse events. STATA software was used to perform data synthesis. RESULTS: Five articles with a total of 192 participants were included. The results indicated that rTMS was superior to control treatments for improving memory performance (mean difference [MD] = 1.73, 95% CI [Confidence Interval] [0.85, 2.60], p < 0.001), global cognition (MD = 2.44, 95% CI [0.96, 3.93], p < 0.001), and ADL (MD = 10.29, 95% CI [5.10, 15.48], p < 0.001). No significant differences were found between the low-frequency (LF) and high-frequency (HF) rTMS subgroups (p = 0.47, I2 = 0.00%) or between the sham rTMS and non-rTMS subgroups (p = 0.94, I2 = 0.00%). Four studies did not reported adverse events. CONCLUSIONS: rTMS may improve memory function, global cognition, and the ability to perform ADL in patients with PSMD. LF-rTMS and HF-rTMS may have equal efficacy for treatment of PSMD. Future studies should consider extending the follow-up period to explore the safety and long-term efficacy of rTMS for treatment of PSMD and the appropriate choice of placebo for clinical trials of this treatment.


Subject(s)
Stroke , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/adverse effects , Activities of Daily Living , Quality of Life , Memory Disorders/etiology , Memory Disorders/therapy , Memory , Stroke/complications , Stroke/therapy
9.
Curr Biol ; 33(20): 4381-4391.e3, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37729909

ABSTRACT

Noncoding polymorphism frequently associates with phenotypic variation, but causation and mechanism are rarely established. Noncoding single-nucleotide polymorphisms (SNPs) characterize the major haplotypes of the Arabidopsis thaliana floral repressor gene FLOWERING LOCUS C (FLC). This noncoding polymorphism generates a range of FLC expression levels, determining the requirement for and the response to winter cold. The major adaptive determinant of these FLC haplotypes was shown to be the autumnal levels of FLC expression. Here, we investigate how noncoding SNPs influence FLC transcriptional output. We identify an upstream transcription start site (uTSS) cluster at FLC, whose usage is increased by an A variant at the promoter SNP-230. This variant is present in relatively few Arabidopsis accessions, with the majority containing G at this site. We demonstrate a causal role for the A variant at -230 in reduced FLC transcriptional output. The G variant upregulates FLC expression redundantly with the major transcriptional activator FRIGIDA (FRI). We demonstrate an additive interaction of SNP-230 with an intronic SNP+259, which also differentially influences uTSS usage. Combinatorial interactions between noncoding SNPs and transcriptional activators thus generate quantitative variation in FLC transcription that has facilitated the adaptation of Arabidopsis accessions to distinct climates.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Flowers/physiology , Transcription Factors/metabolism , Polymorphism, Single Nucleotide , Gene Expression Regulation, Plant
11.
Angew Chem Int Ed Engl ; 62(34): e202304488, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37394662

ABSTRACT

Constructing electrocatalysts with p-block elements is generally considered rather challenging owing to their closed d shells. Here for the first time, we present a p-block-element bismuth-based (Bi-based) catalyst with the co-existence of single-atomic Bi sites coordinated with oxygen (O) and sulfur (S) atoms and Bi nanoclusters (Biclu ) (collectively denoted as BiOSSA /Biclu ) for the highly selective oxygen reduction reaction (ORR) into hydrogen peroxide (H2 O2 ). As a result, BiOSSA /Biclu gives a high H2 O2 selectivity of 95 % in rotating ring-disk electrode, and a large current density of 36 mA cm-2 at 0.15 V vs. RHE, a considerable H2 O2 yield of 11.5 mg cm-2 h-1 with high H2 O2 Faraday efficiency of ∼90 % at 0.3 V vs. RHE and a long-term durability of ∼22 h in H-cell test. Interestingly, the experimental data on site poisoning and theoretical calculations both revealed that, for BiOSSA /Biclu , the catalytic active sites are on the Bi clusters, which are further activated by the atomically dispersed Bi coordinated with O and S atoms. This work demonstrates a new synergistic tandem strategy for advanced p-block-element Bi catalysts featuring atomic-level catalytic sites, and the great potential of rational material design for constructing highly active electrocatalysts based on p-block metals.

12.
Nature ; 619(7969): E33-E37, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438593
13.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1343-1351, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005818

ABSTRACT

The present study investigated the mechanism of artesunate in the treatment of bone destruction in experimental rheumatoid arthritis(RA) based on transcriptomics and network pharmacology. The transcriptome sequencing data of artesunate in the inhibition of osteoclast differentiation were analyzed to obtain differentially expressed genes(DEGs). GraphPad Prism 8 software was used to plot volcano maps and heat maps were plotted through the website of bioinformatics. GeneCards and OMIM were used to collect information on key targets of bone destruction in RA. The DEGs of artesunate in inhibiting osteoclast differentiation and key target genes of bone destruction in RA were intersected by the Venny 2.1.0 platform, and the intersection target genes were analyzed by Gene Ontology(GO)/Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment. Finally, the receptor activator of nuclear factor-κB(RANKL)-induced osteoclast differentiation model and collagen-induced arthritis(CIA) model were established. Quantitative real time polymerase chain reaction(q-PCR), immunofluorescence, and immunohistochemistry were used to verify the pharmacological effect and molecular mechanism of artesunate in the treatment of bone destruction in RA. In this study, the RANKL-induced osteoclast differentiation model in vitro was established and intervened with artesunate, and transcriptome sequencing data were analyzed to obtain 744 DEGs of artesunate in inhibiting osteoclast differentiation. A total of 1 291 major target genes of bone destruction in RA were obtained from GeneCards and OMIM. The target genes of artesunate in inhibiting osteoclast differentiation and the target genes of bone destruction in RA were intersected to obtain 61 target genes of artesunate against bone destruction in RA. The intersected target genes were analyzed by GO/KEGG enrichment. According to the results previously reported, the cytokine-cytokine receptor interaction signaling pathway was selected for experimental verification. Artesunate intervention in the RANKL-induced osteoclast differentiation model showed that artesunate inhibited CC chemokine receptor 3(CCR3), CC chemokine receptor 1(CCR1) and leukemia inhibitory factor(LIF) mRNA expression in osteoclasts in a dose-dependent manner compared with the RANKL-induced group. Meanwhile, the results of immunofluorescence and immunohistochemistry showed that artesunate could dose-dependently reduce the expression of CCR3 in osteoclasts and joint tissues of the CIA rat model in vitro. This study indicated that artesunate regulated the CCR3 in the cytokine-cytokine receptor interaction signaling pathway in the treatment of bone destruction in RA and provided a new target gene for the treatment of bone destruction in RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Rats , Animals , Arthritis, Experimental/drug therapy , Artesunate/pharmacology , Artesunate/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Transcriptome , Network Pharmacology , Osteoclasts , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Receptors, Cytokine/therapeutic use
14.
Anal Chem ; 95(4): 2445-2451, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36652380

ABSTRACT

Employing long-lived luminescent materials to design a chemical sensing platform can eliminate real-time excitation and background fluorescence. However, the realization of long-lived emissions in aqueous media was limited to transition-metal complexes, doped quantum dots, organic crystals, and inorganic persistent phosphors, which suffer from the drawbacks of large size, expensive elements, and poor dispersibility. In this work, phosphorescent carbon dots (CDs) were covalently immobilized in a silica matrix (CDs@SiO2) to achieve afterglow emission in an aqueous dispersion. CDs@SiO2 with long lifetime (∼1.6 s) was utilized as an energy donor to fabricate nonradiative energy transfer systems with various organic dyes through the surface micelle self-assembly method. Benefiting from the high energy transfer efficiency between CDs@SiO2 and organic dyes, multicolor afterglow emissions were successfully obtained in aqueous media. As a proof of concept, a ratiometric phosphorescent probe using CDs@SiO2 as a donor and Hg2+-responsive rhodamine derivative as an acceptor was designed. Hg2+ triggered the energy transfer process between the donor-acceptor pair, leading to the sensitive detection of Hg2+ ions. The work presented here provides opportunities to develop chemical sensors with low background interferences and easily recognizable signals.

15.
Zhonghua Nan Ke Xue ; 29(9): 815-820, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-38639594

ABSTRACT

OBJECTIVE: To investigate the clinical efficacy of dapoxetine combined with transcutaneous neuromuscular electrical stimulation (TNES) in the treatment of primary premature ejaculation. METHODS: A total of 60 patients who met the diagnostic criteria for primary premature ejaculation were selected as study subjects and randomly divided into a dapoxetine group (control group) and a dapoxetine combined with percutaneous neuromuscular electrical stimulation group (observation group).30 patients in each group were treated for 4 weeks. Intravaginal ejaculatory latency time (IELT), the score of Premature Ejaculation Diagnostic Tool (PEDT), sympathetic skin response located in the penis (PSSR), Patient Health Questionnaire (PHQ-9), and Generalized Anxiety Disorder Questionnaire (GAD-7) before and after treatment were recorded in the two groups. Before and after treatment, the difference in observed indexes in the two groups and the comparison of effective rates between the two groups were analyzed. RESULTS: The latency of IELT and PSSR was prolonged and the PEDT score was decreased in both the observation group and the control group, the difference was statistically significant (P<0.01). Compared with the control group, the observation group had statistically significant differences in extending IELT and PSSR latency and reducing PEDT score (P<0.05). The effective rates of the observation group and control group were 90% and 63.33%, respectively, and the difference was statistically significant (P<0.05). There was no significant difference in the improvement of depression and anxiety levels between the two groups (P> 0.05). CONCLUSION: Dapoxetine combined with TNES has a better clinical effect than dapoxetine alone in the treatment of primary premature ejaculation, and can be used as an effective option for clinical treatment of primary premature ejaculation.


Subject(s)
Naphthalenes , Premature Ejaculation , Humans , Male , Benzylamines/therapeutic use , Ejaculation , Electric Stimulation , Premature Ejaculation/drug therapy , Selective Serotonin Reuptake Inhibitors/therapeutic use , Treatment Outcome
16.
J Gastrointest Oncol ; 14(6): 2395-2408, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38196531

ABSTRACT

Background: As a commonly used biomarker in rectal cancer (RC), the prognostic value of carcinoembryonic antigen (CEA) remains underexplored. This study aims to evaluate the prognostic value of pretreatment CEA/tumor volume in RC. Methods: This retrospective study included patients who underwent pretreatment magnetic resonance imaging (MRI) with histologically confirmed primary rectal adenocarcinoma from November 2012 to April 2018. Patients were divided into high-risk and low-risk groups according to the median values of CEA/Diapath (CEA to pathological diameter), CEA/DiaMRI (CEA to MRI tumor diameter), and CEA/VolMRI (CEA to MRI tumor volume). Cox regression analysis was utilized to determine the prognostic value of CEA, CEA/Diapath, CEA/DiaMRI, and CEA/VolMRI. Stepwise regression was used to establish nomograms for predicting disease-free survival (DFS) and overall survival (OS). Predictive performance was estimated by using the concordance index (C-index) and area under curve receiver operating characteristic (AUC). Results: A total of 343 patients [median age 58.99 years, 206 (60.06%) males] were included. After adjusting for patient-related and tumor-related factors, CEA/VolMRI was superior to CEA, CEA/Diapath, and CEA/DiaMRI in distinguishing high-risk from low-risk patients in terms of DFS [hazard ratio (HR) =1.83; P=0.010] and OS (HR =1.67; P=0.048). Subanalysis revealed that CEA/VolMRI stratified high death risk in CEA-negative individuals (HR =2.50; P=0.038), and also stratified low recurrence risk in CEA-positive individuals (HR =2.06; P=0.024). In the subanalysis of stage II or III cases, the highest HRs and the smallest P values were observed in distinguishing high-risk from low-risk patients according to CEA/VolMRI in terms of DFS (HR =2.44; P=0.046 or HR =2.41; P=0.001) and OS (HR =1.96; P=0.130 or HR =2.22; P=0.008). The nomograms incorporating CEA/VolMRI showed good performance, with a C-index of 0.72 [95% confidence interval (CI): 0.68-0.79] for DFS and 0.73 (95% CI: 0.68-0.80) for OS. Conclusions: Higher CEA/VolMRI was associated with worse DFS and OS. CEA/VolMRI was superior to CEA, CEA/Diapath, and CEA/DiaMRI in predicting DFS and OS. Pretreatment CEA/VolMRI may facilitate risk stratification and treatment decision-making.

17.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5327-5335, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36472040

ABSTRACT

Based on the network pharmacology, molecular docking, and animal experiment, this study explored the anti-rheumatoid arthritis(RA) mechanism of Sophorae Tonkinesis Radix et Rhizoma(STRR). The active components of STRR were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), Traditional Chinese Medicine Integrative Database(TCMID), and previous research, main targets of STRR from TCMSP and SwissTargetPrediction, and targets of RA from GeneCards, DrugBank, Online Mendelian Inheritance in Man(OMIM), and Therapeutic Target Database(TTD). The common targets of the two were screened by Venny 2.1.0. Cytoscape 3.6.0 was used to generate the "component-target" network, and STRING and Cytoscape were used to construct the protein-protein interaction(PPI) network. DAVID 6.8 was employed for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment, and AutoDock Vina for molecular docking. Finally, collagen-induced rheumatoid arthritis(CIA) mouse model was constructed, and the expression of core target proteins was detected by Western blot. A total of 27 active components, including quercetin, genistein, kaempferol, subprogenin C, and daidzein, and 154 anti-RA targets, such as signal transducer and activator of transcription 3(STAT3), tumor necrosis factor(TNF), mitogen-activated protein kinase 1(MAPK1), AP-1 transcription factor subunit(JUN), and interleukin 6(IL6), of STRR were screened out. It was preliminarily indicated that STRR may regulate phosphatidylinositol-3-kinase-protein kinase B(PI3 K-AKT) signaling pathway and TNF signaling pathway to modulate the positive regulation of RNA polymerase Ⅱ promoter transcription, inflammatory response, and other biological processes, thus exerting the anti-RA effect. The results of molecular docking showed that the main active components in STRR had high binding affinity to the core targets. Animal experiment suggested that the water extract of STRR can significantly reduce the levels of p-STAT3, p-MAPK1, and TNF. This study demonstrated the multi-component, multi-target and multi-pathway synergistic effect of STRR in the treatment of RA, laying an experimental basis for clinical application of this medicine.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Animals , Mice , Molecular Docking Simulation , Network Pharmacology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Experimental/drug therapy , Arthritis, Experimental/genetics , Tumor Necrosis Factor-alpha , Interleukin-6 , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional
18.
Microbiol Spectr ; 10(6): e0227722, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36354322

ABSTRACT

l-Lactic acid (LA) is a three-carbon hydroxycarboxylic acid with extensive applications in food, cosmetic, agricultural, pharmaceutical, and bioplastic industries. However, microbial LA production is limited by its intrinsic inefficiency of cellular metabolism. Here, pathway engineering was used to rewire the biosynthetic pathway for LA production in Saccharomyces cerevisiae by screening heterologous l-lactate dehydrogenase, reducing ethanol accumulation, and introducing a bacterial acetyl coenzyme A (acetyl-CoA) synthesis pathway. To improve its intrinsic efficiency of LA export, transporter engineering was conducted by screening the monocarboxylate transporters and then strengthening the capacity of LA export, leading to LA production up to 51.4 g/L. To further enhance its intrinsic efficiency of acid tolerance, adaptive evolution was adopted by cultivating yeast cells with a gradual increase in LA levels during 12 serial subcultures, resulting in a 17.5% increase in LA production to 60.4 g/L. Finally, the engineered strain S.c-NO.2-100 was able to produce 121.5 g/L LA, with a yield of up to 0.81 g/g in a 5-L batch bioreactor. The strategy described here provides a guide for developing efficient cell factories for the production of the other industrially useful organic acids. IMPORTANCE Saccharomyces cerevisiae is one of the most widely engineered cell factories for the production of organic acids. However, microbial production of l-lactic acid is limited by its intrinsic inefficiency of cellular metabolism in S. cerevisiae. Here, the transmission efficiency of the biosynthetic pathway was improved by pathway optimization to increase l-lactic acid production. Then, the synthetic ability for l-lactic acid was further enhanced by adaptive evolution to improve acid tolerance of S. cerevisiae. Based on these strategies, the final engineered S. cerevisiae strain achieved high efficiency of l-lactic acid production. These findings provide new insight into improving the intrinsic efficiency of cellular metabolism and will help to construct superior industrial yeast strains for high-level production of other organic acids.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Metabolic Engineering/methods , L-Lactate Dehydrogenase/metabolism , Saccharomyces cerevisiae Proteins/genetics , Lactic Acid/metabolism , Membrane Transport Proteins/metabolism , Fermentation
19.
Medicine (Baltimore) ; 101(40): e30933, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36221389

ABSTRACT

BACKGROUND: Approximately 23% to 55% of patients have memory impairments with a greatly negative effect on daily life 3 months after stroke. Repetitive transcranial magnetic stimulation (rTMS) has been widely used in the rehabilitation of stroke as it is safe, painless, and noninvasive. Moreover, few studies have investigated the effect of rTMS on poststroke memory disorder (PSMD). However, the efficacy of rTMS is not consistent and the optional stimulation frequency is unclear. Therefore, this protocol aims to evaluate the clinical effect and safety of rTMS on PSMD by analyzing results from randomized controlled trials. METHODS: Search strategies will be performed on seven databases: PubMed, EMBASE, CENTRAL, Chinese Biomedical Literature Database (CBM), Chinese National Knowledge Infrastructure (CNKI), Wan Fang, and Technology Periodical Database (VIP). Only randomized controlled trials registered before August 2021 will be included. Additionally, the language will be limited to English or Chinese. For the outcome, we will focus on the Rivermead Behavioral Memory Test. Additionally, the Montreal Cognitive Assessment, Mini-mental State Examination, Modified Barthel Index, and advent events will be included. Two authors will independently select the study, extract data, and assess quality. Moreover, disagreements will be resolved by the third author. STATA 14 and Review Manager 5.4 will be used to perform the analysis. We will evaluate bias risk in accordance with the Cochrane Handbook for Systematic Reviews of Interventions. To assess the quality of evidence, the Grading of Recommendations Assessment, Development, and Evaluation method will be employed. RESULTS: This study will provide a comprehensive analysis of the current evidence on rTMS for PSMD. CONCLUSION: A reliable conclusion regarding whether rTMS is an effective and safe intervention for patients with PSMD and the effect of stimulation frequency and sham stimulation will be provided. This study will provide new insights for TMS in treating PSMD, and offer appropriate treatmentoptions to patients and clinicians. PROSPERO REGISTRATION NUMBER: CRD42021282439.


Subject(s)
Stroke , Transcranial Magnetic Stimulation , Humans , Memory Disorders/etiology , Memory Disorders/therapy , Meta-Analysis as Topic , Stroke/complications , Stroke/therapy , Systematic Reviews as Topic , Transcranial Magnetic Stimulation/adverse effects , Transcranial Magnetic Stimulation/methods
20.
Antioxidants (Basel) ; 11(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36290580

ABSTRACT

A limited number of antifungal drugs, the side-effect of clinical drugs and the emergence of resistance create an urgent need for new antifungal treatment agents. High-throughput drug screening and in-depth drug action mechanism analyzation are needed to address this problem. In this study, we identified that artemisinin and its derivatives possessed antifungal activity through a high-throughput screening of the FDA-approved drug library. Subsequently, drug-resistant strains construction, a molecular dynamics simulation and a transcription level analysis were used to investigate artemisinin's action mechanism in Candida glabrata. Transcription factor pleiotropic drug resistance 1 (PDR1) was an important determinant of artemisinin's sensitivity by regulating the drug efflux pump and ergosterol biosynthesis pathway, leading to mitochondrial dysfunction. This dysfunction was shown by a depolarization of the mitochondrial membrane potential, an enhancement of the mitochondrial membrane viscosity and an upregulation of the intracellular ROS level in fungi. The discovery shed new light on the development of antifungal agents and understanding artemisinin's action mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...