Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Aquat Toxicol ; 249: 106241, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35868139

ABSTRACT

Nebivolol (NEB), a ß-blocker frequently used to treat cardiovascular diseases, has been widely detected in aquatic environments, and can be degraded under exposure to UV radiation, leading to the formation of certain transformation products (UV-TPs). Thus, the toxic effects of NEB and its UV-TPs on aquatic organisms are of great importance for aquatic ecosystems. In the present study, the degradation pathway of NEB under UV radiation was investigated. Subsequently, zebrafish embryos/larvae were used to assess the median lethal concentration (LC50) of NEB, and to clarify the sub-lethal effects of NEB and its UV-TPs for the first time. It was found that UV radiation could reduce the toxic effects of NEB on the early development of zebrafish. Transcriptomic analysis identified the top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in zebrafish larvae exposed to NEB, most of which were associated with the antioxidant, nervous, and immune systems. The number of differentially expressed genes (DEGs) in the pathways were reduced after UV radiation. Furthermore, the analysis of protein biomarkers, including CAT and GST (antioxidant response), AChE and ACh (neurotoxicity), CRP and LYS (immune response), revealed that NEB exposure reduced the activity of these biomarkers, whereas UV radiation could alleviate the effects. The present study provides initial insights into the mechanisms underlying toxic effects of NEB and the detoxification effects of UV radiation on the early development of zebrafish. It highlights the necessity of considering the toxicity of UV-TPs when evaluating the toxicity of emerging pollutants in aquatic systems.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Ecosystem , Embryo, Nonmammalian , Larva , Nebivolol/metabolism , Nebivolol/pharmacology , Transcriptome , Ultraviolet Rays , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
2.
Environ Pollut ; 287: 117649, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34182397

ABSTRACT

Gabapentin-lactam (GBP-L) is a transformation product (TP) of gabapentin (GBP), a widely used anti-epileptic pharmaceutical. Due to its high persistence, GBP-L has been frequently detected in the surface water. However, the effects of GBP-L on aquatic organisms have not been thoroughly investigated. In the present study, zebrafish (Danio rerio) embryos as a model organism were used to study the impacts of GBP-L in terms of embryos LC50, spontaneous movement at 24 hpf (hours post fertilization), heartbeat rates at 48 hpf, and body length at 72 hpf, with the concentrations of GBP-L down to 0.01 µg/L, covering its environmental concentrations. Various biomarkers from nervous, antioxidant and immune systems of zebrafish larvae were analyzed, including acetylcholinesterase, acetylcholine, dopamine, gamma-aminobutyric acid, superoxide dismutase, catalase, glutathione S-transferase, C reactive protein, and lysozyme, to assess its toxicity on these systems. RT-qPCR was then used to further verify the results and explain the toxicological mechanism at the gene level. The results demonstrated that GBP-L is much more toxic than its parent compound, and could lead to adverse impacts on the aquatic organisms even at every low concentrations.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Aza Compounds , Embryo, Nonmammalian/metabolism , Larva , Oxidative Stress , Spiro Compounds , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
3.
RSC Adv ; 11(26): 15762-15784, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-35481192

ABSTRACT

Wide usage of plastic products leads to the global occurrence of microplastics (MPs) in the aquatic environment. Due to the small size, they can be bio-ingested, which may cause certain health effects. The present review starts with summarizing the main sources of various types of MPs and their occurrences in the aquatic environment, as well as their transportation and degradation pathways. The analysis of migration of MPs in water environments shows that the ultimate fate of most MPs in water environments is cracked into small fragments and sinking into the bottom of the ocean. The advantages and disadvantages of existing methods for detection and analysis of MPs are summarized. In addition, based on recent researches, the present review discusses MPs as carriers of organic pollutants and microorganisms, and explores the specific effects of MPs on aquatic organisms in the case of single and combined pollutants. Finally, by analysing the causes and influencing factors of their trophic transfer, the impact of MPs on high-level trophic organisms is explored.

SELECTION OF CITATIONS
SEARCH DETAIL