Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 478
Filter
1.
Dig Liver Dis ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38744556

ABSTRACT

OBJECTIVE: The primary purpose of the study was to explore the clinical efficacy of the novel snare assisted endoscopic resection of extraluminal growing gastric gastrointestinal stromal tumors (gastric GISTs) using external traction, and the secondary purpose was to compare the novel snare assisted endoscopic resection of extraluminal GISTs with the standard laparoscopic procedure. METHODS: We retrospectively analyzed the patients who underwent novel external traction assisted endoscopic resection or laparoscopic resection for their extraluminal gastric GIST ≤5 cm in diameter. RESULTS: A total of 111 patients (27 in the endoscopic group and 84 in the laparoscopic group) were included in this study. There was no significant difference in tumor diameter and complication rate between the two groups. The overall procedure time was slightly higher in the endoscopic group compared to the laparoscopic group (P = 0.034). However, postoperative hospitalization time (P < 0.001) and postoperative fasting time (P = 0.005) were shorter in the endoscopic group compared to the laparoscopic group. CONCLUSION: Snare external traction-assisted endoscopic resection of extraluminal growing gastric GISTs is safe and effective, and it provides a new adjunctive method for endoscopic resection of GIST.

2.
J Craniofac Surg ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709044

ABSTRACT

Plastic surgeons charged with reconstructing extensive perioral defects face dual challenges of functional restoration and esthetic considerations. While forehead flaps are commonly used to reconstruct perioral defects, in cases involving partial upper lip defects where normal anatomical structures are preserved, traditional forehead flaps may compromise esthetics. This study aimed to address this issue by employing bipedicled preexpanded forehead flaps based on the frontal branches of the superficial temporal artery (hereafter, "STA-bfb-based preexpanded forehead flap") with random flap extensions to repair perioral defects. Between April 2004 and July 2020, 7 patients (5 males and 2 females; 6 had post-burn facial scars involving the entire lower lip and part of the upper lip, and 1 presented with noma sequelae) underwent perioral defect reconstruction using this approach. Tissue expanders were placed in the forehead donor area, and an STA-bfb-based preexpanded forehead flap with random flap extensions was used to repair the perioral defect. The flap pedicle was divided into 3 weeks. All flaps remained viable with no perfusion-related complications. At follow-up 12 to 96 months later, the color and texture of the flaps demonstrated excellent compatibility with the surrounding skin, suggesting that the use of an STA-bfb-based preexpanded forehead flap with random skin flap extensions is a reliable method for repairing perioral defects. The authors' results have implications for plastic surgeons seeking a solution for challenging perioral defect reconstructions, balancing the need for esthetic outcomes with functional restoration.

3.
Inflammation ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668837

ABSTRACT

Sleep deprivation (SD) has been associated with several adverse effects, including cognitive deficit. Emerging evidence suggests microglia-associated neuroinflammation is a potential trigger of cognitive deficit after SD. Stimulator of interferon genes (STING) constitutes an important factor in host immune response to pathogenic organisms and is found in multiple cells, including microglia. STING is involved in neuroinflammation during neuronal degeneration, although how STING signaling affects SD-induced neuroinflammation remains unexplored. In the present study, the chronic sleep restriction (CSR) model was applied to examine the effects of STING signaling on cognition. The results revealed that cGAMP, a high-affinity and selective STING agonist, significantly improved cognitive deficit, alleviated neural injury, and relieved neuroinflammation in CSR mice by activating the STING-TBK1-IRF3 pathway. Moreover, triggering receptor expressed on myeloid cells 2 (TREM2) was upregulated in CSR mice treated with cGAMP, and this effect was abolished by STING knockout. TREM2 upregulation induced by cGAMP regulated the microglia from pro-inflammatory state to anti-inflammatory state, thereby relieving neuroinflammation in CSR mice. These findings indicate cGAMP-induced STING signaling activation alleviates SD-associated neuroinflammation and cognitive deficit by upregulating TREM2, providing a novel approach for the treatment of SD-related nerve injury.

4.
Nano Lett ; 24(15): 4610-4617, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564191

ABSTRACT

The intricate protonation process in carbon dioxide reduction usually makes the product unpredictable. Thus, it is significant to control the reactive intermediates to manipulate the reaction steps. Here, we propose that the synergistic La-Ti active sites in the N-La2Ti2O7 nanosheets enable the highly selective carbon dioxide photoreduction into methane. In the photoreduction of CO2 over N-La2Ti2O7 nanosheets, in situ Fourier transform infrared spectra are utilized to monitor the *CH3O intermediate, pivotal for methane production, whereas such monitoring is not conducted for La2Ti2O7 nanosheets. Also, theoretical calculations testify to the increased charge densities on the Ti and La atoms and the regulated formation energy barrier of *CO and *CH3O intermediates by the constructed synergistic active sites. Accordingly, the methane formation rate of 7.97 µL h-1 exhibited by the N-La2Ti2O7 nanosheets, along with an electron selectivity of 96.6%, exceeds that of most previously reported catalysts under similar conditions.

5.
Opt Lett ; 49(6): 1532-1535, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489443

ABSTRACT

This study presents a conceptual design for a hyperbolic material utilizing transformation optics. This material is designed to produce multiple hyperbolic wave fields or polaritons excited by a point source. The design dictates key parameters including branch number, propagation range, and overall propagation direction of deflection. Through this approach, the hyperbolic material demonstrates new effects compared to traditional hyperbolic materials. These advancements offer possibilities for the design and applications of photonic devices in other degrees of freedom.

6.
Mol Breed ; 44(3): 22, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435473

ABSTRACT

Meeting the ever-increasing food demands of a growing global population while ensuring resource and environmental sustainability presents significant challenges for agriculture worldwide. Arbuscular mycorrhizal symbiosis (AMS) has emerged as a potential solution by increasing the surface area of a plant's root system and enhancing the absorption of phosphorus, nitrogen nutrients, and water. Consequently, there is a longstanding hypothesis that rice varieties exhibiting more efficient AMS could yield higher outputs at reduced input costs, paving the way for the development of Green Super Rice (GSR). Our prior research study identified a variant, OsCERK1DY, derived from Dongxiang wild-type rice, which notably enhanced AMS efficiency in the rice cultivar "ZZ35." This variant represents a promising gene for enhancing yield and nutrient use efficiency in rice breeding. In this study, we conducted a comparative analysis of biomass, crop growth characteristics, yield attributes, and nutrient absorption at varying soil nitrogen levels in the rice cultivar "ZZ35" and its chromosome single-segment substitution line, "GJDN1." In the field, GJDN1 exhibited a higher AM colonization level in its roots compared with ZZ35. Notably, GJDN1 displayed significantly higher effective panicle numbers and seed-setting rates than ZZ35. Moreover, the yield of GJDN1 with 75% nitrogen was 14.27% greater than the maximum yield achieved using ZZ35. At equivalent nitrogen levels, GJDN1 consistently outperformed ZZ35 in chlorophyll (Chl) content, dry matter accumulation, major nutrient element accumulation, N agronomic efficiency (NAE), N recovery efficiency (NRE), and N partial factor productivity (NPFP). The performance of OsCERK1DY overexpression lines corroborated these findings. These results support a model wherein the heightened level of AMS mediated by OsCERK1DY contributes to increased nitrogen, phosphorus, and potassium accumulation. This enhancement in nutrient utilization promotes higher fertilizer efficiency, dry matter accumulation, and ultimately, rice yield. Consequently, the OsCERK1DY gene emerges as a robust candidate for improving yield, reducing fertilizer usage, and facilitating a transition towards greener, lower-carbon agriculture. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01459-8.

7.
NPJ Biofilms Microbiomes ; 10(1): 25, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509085

ABSTRACT

Hyperuricemia (HUA) is a metabolic syndrome caused by abnormal purine metabolism. Although recent studies have noted a relationship between the gut microbiota and gout, whether the microbiota could ameliorate HUA-associated systemic purine metabolism remains unclear. In this study, we constructed a novel model of HUA in geese and investigated the mechanism by which Lactobacillus rhamnosus GG (LGG) could have beneficial effects on HUA. The administration of antibiotics and fecal microbiota transplantation (FMT) experiments were used in this HUA goose model. The effects of LGG and its metabolites on HUA were evaluated in vivo and in vitro. Heterogeneous expression and gene knockout of LGG revealed the mechanism of LGG. Multi-omics analysis revealed that the Lactobacillus genus is associated with changes in purine metabolism in HUA. This study showed that LGG and its metabolites could alleviate HUA through the gut-liver-kidney axis. Whole-genome analysis, heterogeneous expression, and gene knockout of LGG enzymes ABC-type multidrug transport system (ABCT), inosine-uridine nucleoside N-ribohydrolase (iunH), and xanthine permease (pbuX) demonstrated the function of nucleoside degradation in LGG. Multi-omics and a correlation analysis in HUA patients and this goose model revealed that a serum proline deficiency, as well as changes in Collinsella and Lactobacillus, may be associated with the occurrence of HUA. Our findings demonstrated the potential of a goose model of diet-induced HUA, and LGG and proline could be promising therapies for HUA.


Subject(s)
Hyperuricemia , Lacticaseibacillus rhamnosus , Humans , Hyperuricemia/therapy , Nucleosides , Lactobacillus , Proline , Purines
8.
Article in English | MEDLINE | ID: mdl-38551057

ABSTRACT

AIMS: The aim of this study is to explore the anti-depressant mechanism of Chaihu- Shugan San based on serum medicinal chemistry and network pharmacology methods. BACKGROUND: Depression lacks effective treatments, with current anti-depressants ineffective in 40% of patients. Chaihu-Shugan San (CHSGS) is a well-known traditional Chinese medicine compound to treat depression. However, the chemical components and the underlying mechanisms targeting the liver and brain in the anti-depressant effects of CHSGS need to be elucidated. METHODS: The chemical components of CHSGS in most current network pharmacology studies are screened from TCMSP and TCMID databases. In this study, we investigated the mechanism and material basis of soothing the liver and relieving depression in the treatment of depression by CHSGS based on serum pharmacochemistry. The anti-depressant mechanism of CHSGS was further verified by proteomics and high-throughput data. RESULTS: Through serum medicinal chemistry, we obtained 9 bioactive substances of CHSGS. These ingredients have good human oral bioavailability and are non-toxic. Based on liver ChIPseq data, CHSGS acts on 8 targets specifically localized in the liver, such as FGA, FGB, and FGG. The main contributors to CHSGS soothing the liver qi targets are hesperetin, nobiletin, ferulic acid, naringin and albiflorin. In addition, network pharmacology analysis identified 9 blood components of CHSGS that corresponded to 63 anti-depressant targets in the brain. Among them, nobiletin has the largest number of anti-depressant targets, followed by glycyrrhizic acid, ferulic acid, albiflorin and hesperetin. We also validated the anti-depressant mechanism of CHSGS based on hippocampal proteomics. CHSGS exerts anti-depressant effects on synaptic structure and neuronal function by targeting multiple synapse related proteins. CONCLUSION: This study not only provides a theoretical basis for further expanding the clinical application of CHSGS, but also provides a series of potential lead compounds for the development of depression drugs.

10.
Dig Dis Sci ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483780

ABSTRACT

OBJECTIVE: To investigate the safety and prognosis of enbloc or piecemeal removal after enbloc resection of a gastric GIST by comparing the clinical data of endoscopic en block resection and piecemeal removal (EP) and en block resection and complete removal (EC) of gastric GISTs. METHODS: A total of 111 (43 endoscopic piecemeal, and 68 complete removal) patients with gastric GIST's ≥ 2 cm in diameter who underwent endoscopic therapy from January 2016 to June 2020 at the First Affiliated Hospital of Zhengzhou University were retrospectively analyzed. In all cases, it was ensured that the tumor was intact during the resection, however, it was divided into EP group and EC group based on whether the tumor was completely removed or was cut into pieces which were then removed. The patients' recurrence-free survival rate and recurrence-free survival (RFS) were recorded. RESULTS: There was no statistically significant difference in RFS rates between the two groups (P = 0.197). The EP group had relatively high patient age, tumor diameter, risk classification, and operation time. However, there was no statistically significant difference in the number of nuclear fission images, postoperative hospitalization time, postoperative fasting time, complication rate and complication grading between the two groups (P > 0.05). CONCLUSION: Endoscopic piecemeal removal after en block resection of gastric GIST is safe and effective and achieves similar clinical outcomes as complete removal after en block resection.

11.
Angew Chem Int Ed Engl ; 63(13): e202400828, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38326235

ABSTRACT

Targeted synthesis of acetic acid (CH3 COOH) from CO2 photoreduction under mild conditions mainly limits by the kinetic challenge of the C-C coupling. Herein, we utilized doping engineering to build charge-asymmetrical metal pair sites for boosted C-C coupling, enhancing the activity and selectivity of CO2 photoreduction towards CH3 COOH. As a prototype, the Pd doped Co3 O4 atomic layers are synthesized, where the established charge-asymmetrical cobalt pair sites are verified by X-ray photoelectron spectroscopy and X-ray absorption near edge spectroscopy spectra. Theoretical calculations not only reveal the charge-asymmetrical cobalt pair sites caused by Pd atom doping, but also manifest the promoted C-C coupling of double *COOH intermediates through shortening of the coupled C-C bond distance from 1.54 to 1.52 Å and lowering their formation energy barrier from 0.77 to 0.33 eV. Importantly, the decreased reaction energy barrier from the protonation of two*COOH into *CO intermediates for the Pd-Co3 O4 atomic layer slab is 0.49 eV, higher than that of the Co3 O4 atomic layer slab (0.41 eV). Therefore, the Pd-Co3 O4 atomic layers exhibit the CH3 COOH evolution rate of ca. 13.8 µmol g-1 h-1 with near 100% selectivity, both of which outperform all previously reported single photocatalysts for CO2 photoreduction towards CH3 COOH under similar conditions.

12.
Cell Host Microbe ; 32(3): 366-381.e9, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38412863

ABSTRACT

Hyperuricemia induces inflammatory arthritis and accelerates the progression of renal and cardiovascular diseases. Gut microbiota has been linked to the development of hyperuricemia through unclear mechanisms. Here, we show that the abundance and centrality of Alistipes indistinctus are depleted in subjects with hyperuricemia. Integrative metagenomic and metabolomic analysis identified hippuric acid as the key microbial effector that mediates the uric-acid-lowering effect of A. indistinctus. Mechanistically, A. indistinctus-derived hippuric acid enhances the binding of peroxisome-proliferator-activated receptor γ (PPARγ) to the promoter of ATP-binding cassette subfamily G member 2 (ABCG2), which in turn boosts intestinal urate excretion. To facilitate this enhanced excretion, hippuric acid also promotes ABCG2 localization to the brush border membranes in a PDZ-domain-containing 1 (PDZK1)-dependent manner. These findings indicate that A. indistinctus and hippuric acid promote intestinal urate excretion and offer insights into microbiota-host crosstalk in the maintenance of uric acid homeostasis.


Subject(s)
Bacteroidetes , Hippurates , Hyperuricemia , Humans , Hyperuricemia/metabolism , Uric Acid/metabolism , Intestines , ATP-Binding Cassette Transporters/metabolism
13.
Adv Mater ; : e2314209, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331431

ABSTRACT

Electrochemically reconstructed Cu-based catalysts always exhibit enhanced CO2  electroreduction performance; however, it still remains ambiguous whether the reconstructed Cu vacancies have a substantial impact on CO2 -to-C2+ reactivity. Herein, Cu vacancies are first constructed through electrochemical reduction of Cu-based nanowires, in which high-angle annular dark-field scanning transmission electron microscopy image manifests the formation of triple-copper-vacancy associates with different concentrations, confirmed by positron annihilation lifetime spectroscopy. In situ attenuated total reflection-surface enhanced infrared absorption spectroscopy discloses the triple-copper-vacancy associates favor *CO adsorption and fast *CO dimerization. Moreover, density-functional-theory calculations unravel the triple-copper-vacancy associates endow the nearby Cu sites with enriched and disparate local charge density, which enhances the *CO adsorption and reduces the CO-CO coupling barrier, affirmed by the decreased *CO dimerization energy barrier by 0.4 eV. As a result, the triple-copper-vacancy associates confined in Cu nanowires achieve a high Faradaic efficiency of over 80% for C2+ products in a wide current density range of 400-800 mA cm-2 , outperforming most reported Cu-based electrocatalysts.

15.
World Neurosurg ; 183: e818-e824, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218442

ABSTRACT

BACKGROUND: The accurate diagnosis of fresh vertebral fractures (VFs) was critical to optimizing treatment outcomes. Existing studies, however, demonstrated insufficient accuracy, sensitivity, and specificity in detecting fresh fractures using magnetic resonance imaging (MRI), and fall short in localizing the fracture sites. METHODS: This prospective study comprised 716 patients with fresh VFs. We obtained 849 Short TI Inversion Recovery (STIR) image slices for training and validation of the AI model. The AI models employed were yolov7 and resnet50, to detect fresh VFs. RESULTS: The AI model demonstrated a diagnostic accuracy of 97.6% for fresh VFs, with a sensitivity of 98% and a specificity of 97%. The performance of the model displayed a high degree of consistency when compared to the evaluations by spine surgeons. In the external testing dataset, the model exhibited a classification accuracy of 92.4%, a sensitivity of 93%, and a specificity of 92%. CONCLUSIONS: Our findings highlighted the potential of AI in diagnosing fresh VFs, offering an accurate and efficient way to aid physicians with diagnosis and treatment decisions.


Subject(s)
Deep Learning , Spinal Fractures , Humans , Prospective Studies , Spinal Fractures/diagnostic imaging , Spinal Fractures/surgery , Magnetic Resonance Imaging/methods , Spine/pathology , Retrospective Studies
16.
Genes (Basel) ; 15(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38254987

ABSTRACT

Rehmannia chingii is an important medicinal plant with immense value in scientific research. However, its mitochondrial genome (mitogenome) has not yet been characterized. Herein, based on whole-genome Illumina short reads and PacBio HiFi reads, we obtained the complete mitogenome of R. chingii through a de novo assembly strategy. We carried out comparative genomic analyses and found that, in comparison with the plastid genome (plastome) showing a high degree of structural conservation, the R. chingii mitogenome structure is relatively complex, showing an intricate ring structure with 16 connections, owing to five repetitive sequences. The R. chingii mitogenome was 783,161 bp with a GC content of 44.8% and contained 77 genes, comprising 47 protein-coding genes (CDS), 27 tRNA genes, and 3 rRNA genes. We counted 579 RNA editing events in 47 CDS and 12,828 codons in all CDSs of the R. chingii mitogenome. Furthermore, 24 unique sequence transfer fragments were found between the mitogenome and plastome, comprising 8 mitogenome CDS genes and 16 plastome CDS genes, corresponding to 2.39% of the R. chingii mitogenome. Mitogenomes had shorter but more collinear regions, evidenced by a comparison of the organelles of non-parasitic R. chingii, hemiparasitic Pedicularis chinensis, and holoparasitic Aeginetia indica in the Orobanchaceae family. Moreover, from non-parasitic to holoparasitic species, the genome size in the mitogenomes of Orobanchaceae species did not decrease gradually. Instead, the smallest mitogenome was found in the hemiparasitic species P. chinensis, with a size of 225,612 bp. The findings fill the gap in the mitogenome research of the medicinal plant R. chingii, promote the progress of the organelle genome research of the Orobanchaceae family, and provide clues for molecular breeding.


Subject(s)
Genome, Mitochondrial , Ichthyosiform Erythroderma, Congenital , Lipid Metabolism, Inborn Errors , Muscular Diseases , Orobanchaceae , Rehmannia , Genome, Mitochondrial/genetics , Comparative Genomic Hybridization
17.
Clin Kidney J ; 17(1): sfad027, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38186883

ABSTRACT

Objective: To explore the advantages of urinary matrix metalloproteinase-7 (MMP-7) in evaluating renal tubular injury in minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) patients compared with urinary cystatin C (CysC) and retinol-binding protein (RBP). Methods: Serum and urine samples were collected from 20 healthy volunteers, and 40 MCD and 20 FSGS patients. Serum and urinary MMP-7 levels were measured by enzyme-linked immunosorbent assay. Urinary total protein, CysC and RBP levels were measured by automatic specific protein analyzer and compared with urinary creatinine level for calibration. The renal tissue serial sections were stained by MMP-7 immunohistochemistry and periodic acid-Schiff. Results: Under light microscopy, MMP-7 granular weak positive expression was showed sporadically in the cytoplasm of a few renal tubular epithelial cells without obvious morphological changes in MCD patients, and MMP-7-positive expression was observed in the cytoplasm of some renal tubular epithelial cells in FSGS patients. There was no significant difference in serum MMP-7 level among the three groups. Compared with the control group, the urinary MMP-7 level in MCD patients was higher, but urinary CysC and RBP levels were not increased significantly. Compared with the control group and MCD patients, urinary MMP-7, CysC and RBP levels in FSGS patients were upregulated significantly. Conclusions: Urinary MMP-7 could not only evaluate the mild renal tubular epithelial cells injury in MCD patients with massive proteinuria, but also evaluate the continuous renal tubular epithelial cells injury in FSGS patients.

18.
Plast Reconstr Surg ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38194621

ABSTRACT

BACKGROUND: Reconstruction of extensive defects remains challenging for plastic surgeons. We report our experience with extensive defect reconstruction using multiple perforator propeller flaps and provide a systematic review of the literature on this approach. METHODS: This retrospective study included patients who underwent defect reconstruction with multiple perforator propeller flaps from 2014 to 2021. A systematic review was conducted by retrieving studies on reconstructive strategy from PubMed, Web of Science, EMBASE, and Scopus published before December 1, 2022. RESULTS: Thirty patients underwent defect reconstruction using 65 perforator propeller flaps. The posterior trunk (66.7%) was the most common site of defects. Complete flap survival was achieved in 61 flaps (93.8%). Partial necrosis of four flaps in three patients and venous congestion of one flap resulted in an overall complication rate of 13.3%. One flap experienced distal tip necrosis in 21 patients undergoing posterior trunk or perineal defect reconstruction, leading to an overall complication rate of 4.7%. Other complications were observed during the reconstruction of defects in the lower extremities (one of five patients) and anterior trunk (two of four patients). In the systematic review, 11 articles involving 74 patients were identified. The commonly reported locations of the defects were the perineum (55.4%) and posterior trunk (33.8%). Flap-related complications included venous congestion, and no flaps were lost. CONCLUSIONS: This study on the use of multiple perforator propeller flaps in a jigsaw puzzle approach demonstrated that the method can be effectively used for extensive posterior trunk and perineal defect reconstruction.

19.
Nano Lett ; 24(2): 696-702, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38175193

ABSTRACT

Selectively achieving the photoreduction of carbon dioxide (CO2) to methane (CH4) remains a significant challenge, which primarily arises from the complexity of the protonation process. In this work, we designed metal-vacancy pair sites in defective metal oxide semiconductors, which anchor the reactive intermediates with a bridged linkage for the selective protonation to produce CH4. As an example, oxygen-deficient Nb2O5 nanosheets are synthesized, in which the niobium-oxygen vacancy pair sites are demonstrated by X-ray photoelectron spectroscopy and electron paramagnetic resonance spectra. In situ Fourier transform infrared spectroscopy monitors the *CH3O intermediate, a key intermediate for CH4 production, during the CO2 photoreduction in oxygen-deficient Nb2O5 nanosheets. Importantly, the built metal-vacancy pair sites regulate the *CH3O formation step as a spontaneous process, making the reduction of CO2 to CH4 the preferred method. Therefore, the oxygen-deficient Nb2O5 nanosheets exhibit a CH4 formation rate of 19.14 µmol g-1 h-1, with an electron selectivity of ∼94.1%.

20.
Zhen Ci Yan Jiu ; 49(1): 47-56, 2024 Jan 25.
Article in English, Chinese | MEDLINE | ID: mdl-38239138

ABSTRACT

OBJECTIVES: To observe the effect of moxibustion intervention on the hypothalamus-spinal cord-colon axis of rats with irritable bowel syndrome with diarrhea (IBS-D) and explore the mechanism of moxibustion in improving visceral hypersensitivity in rats with IBS-D. METHODS: A total of 36 SD rats were randomly divided into normal, model, and moxibustion groups, with 12 rats in each group. The IBS-D model was established by maternal separation + acetic acid stimulation + chronic restraint. Rats of the moxibustion group received bilateral moxibustion on "Tianshu" (ST25) and "Shangjuxu" (ST37) for 15 min, once a day for 7 consecutive days. The body weight, loose stool rate, and minimum threshold volume of abdominal withdrawal reflex (AWR) were measured before and after moxibustion intervention, respectively. The histopathological changes in the colon tissue were observed after HE staining. The number of colonic mucosal mast cells (MCs) was measured by toluidine blue staining. The activation of MCs was determined by tryptase positive expression level and examined by immunohistochemical staining. The content, protein and mRNA expression levels and positive expression levels of corticotropin releasing factor (CRF), substance P (SP), and calcitonin gene-related peptide (CGRP) in the hypothalamus, spinal cord and colon tissues were measured by ELISA, Western blot, real-time fluorescent quantitative PCR and immunofluorescence staining, respectively. RESULTS: Compared with the normal group, the loose stool rate was increased (P<0.01);the body weight and minimum threshold volume of AWR were decreased (P<0.01);the inflammatory infiltration of colon tissues was obvious;the number of MCs and positive expression level of tryptase in the colon tissue were increased (P<0.01);the contents, positive expression le-vels, protein and mRNA expression levels of CRF, SP and CGRP in the hypothalamus, spinal cord and colon tissues were increased (P<0.01, P<0.05) in the model group. After the intervention, compared with the model group, all these indicators showed opposite trends (P<0.01, P<0.05) in the moxibustion group. CONCLUSIONS: Moxibustion can improve visceral hypersensitivity in rats with IBS-D, and its mechanism may be related to regulating the hypothalamic-spinal-colon axis to reduce the release of CRF, SP and CGRP, and thus to inhibite MC in colon tissue.


Subject(s)
Irritable Bowel Syndrome , Moxibustion , Rats , Animals , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/therapy , Irritable Bowel Syndrome/metabolism , Rats, Sprague-Dawley , Corticotropin-Releasing Hormone/metabolism , Tryptases/metabolism , Calcitonin Gene-Related Peptide/metabolism , Maternal Deprivation , Diarrhea/genetics , Diarrhea/therapy , Hypothalamus/metabolism , Substance P/metabolism , Spinal Cord , Body Weight , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...