Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurogenetics ; 25(2): 131-139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460076

ABSTRACT

Twin and family studies have established the genetic contribution to idiopathic generalized epilepsy (IGE). The genetic architecture of IGE is generally complex and heterogeneous, and the majority of the genetic burden in IGE remains unsolved. We hypothesize that gene-gene interactions contribute to the complex inheritance of IGE. CNTN2 (OMIM* 615,400) variants have been identified in cases with familial adult myoclonic epilepsy and other epilepsies. To explore the gene-gene interaction network in IGE, we took the CNTN2 gene as an example and investigated its co-occurrent genetic variants in IGE cases. We performed whole-exome sequencing in 114 unrelated IGE cases and 296 healthy controls. Variants were qualified with sequencing quality, minor allele frequency, in silico prediction, genetic phenotype, and recurrent case numbers. The STRING_TOP25 gene interaction network analysis was introduced with the bait gene CNTN2 (denoted as A). The gene-gene interaction pair mode was presumed to be A + c, A + d, A + e, with a leading gene A, or A + B + f, A + B + g, A + B + h, with a double-gene A + B, or other combinations. We compared the number of gene interaction pairs between the case and control groups. We identified three pairs in the case group, CNTN2 + PTPN18, CNTN2 + CNTN1 + ANK2 + ANK3 + SNTG2, and CNTN2 + PTPRZ1, while we did not discover any pairs in the control group. The number of gene interaction pairs in the case group was much more than in the control group (p = 0.021). Taking together the genetic bioinformatics, reported epilepsy cases, and statistical evidence in the study, we supposed CNTN2 as a candidate pathogenic gene for IGE. The gene interaction network analysis might help screen candidate genes for IGE or other complex genetic disorders.


Subject(s)
Contactins , Epilepsy, Generalized , Epistasis, Genetic , Gene Regulatory Networks , Genetic Predisposition to Disease , Adolescent , Adult , Child , Female , Humans , Male , Young Adult , Case-Control Studies , Contactins/genetics , Epilepsy, Generalized/genetics , Exome Sequencing , Gene Frequency
2.
Neurogenetics ; 24(3): 161-169, 2023 07.
Article in English | MEDLINE | ID: mdl-37022522

ABSTRACT

Gene sub-region encoded protein domain is the basic unit for protein structure and function. The DMD gene is the largest coding gene in humans, with its phenotype relevant to idiopathic generalized epilepsy. We hypothesized variants clustered in sub-regions of idiopathic generalized epilepsy genes and investigated the relationship between the DMD gene and idiopathic generalized epilepsy. Whole exome sequencing was performed in 106 idiopathic generalized epilepsy individuals. DMD variants were filtered with variant type, allele frequency, in silico prediction, hemizygous or homozygous status in the population, inheritance mode, and domain location. Variants located at the sub-regions were selected by the subRVIS software. The pathogenicity of variants was evaluated by the American College of Medical Genetics and Genomics criteria. Articles on functional studies related to epilepsy for variants clustered protein domains were reviewed. In sub-regions of the DMD gene, two variants were identified in two unrelated cases with juvenile absence epilepsy or juvenile myoclonic epilepsy. The pathogenicity of both variants was uncertain significance. Allele frequency of both variants in probands with idiopathic generalized epilepsy reached statistical significance compared with the population (Fisher's test, p = 2.02 × 10-6, adjusted α = 4.52 × 10-6). The variants clustered in the spectrin domain of dystrophin, which binds to glycoprotein complexes and indirectly affects ion channels contributing to epileptogenesis. Gene sub-region analysis suggests a weak association between the DMD gene and idiopathic generalized epilepsy. Functional analysis of gene sub-region helps infer the pathogenesis of idiopathic generalized epilepsy.


Subject(s)
Epilepsy, Generalized , Epilepsy , Humans , Epilepsy, Generalized/genetics , Gene Frequency , Phenotype
3.
Neurochem Res ; 36(1): 67-75, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20848190

ABSTRACT

Oxidative stress is one of the most important pathological mechanisms in neurodegenerative diseases and ischemia. Recent studies have indicated that the sonic hedgehog (SHH) signaling pathway is involved in these diseases, but the underlying mechanisms remains elusive. Here we report that the SHH pathway was activated in primary cultured cortical neurons after exposure to hydrogen peroxide (H2O2). H2O2 treatment decreased the cell viability of neurons, and inhibition of endogenous SHH signaling exacerbated its neurotoxicity. Activation of SHH signaling protected neurons from H2O2-induced apoptosis and increased the cell viability while those effects were partially reversed by blocking SHH signals. Exogenous SHH increased the activities of Superoxide dismutase (SOD) and Glutathione peroxidase (GSH-PX) in H2O2-treated neurons and decreased production of Malondialdehyde (MDA). It also promoted expression of the anti-apoptotic gene Bcl-2 and inhibited expression of pro-apoptotic gene Bax. Activation of SHH signals upregulated both Neurotrophic factors vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). Pretreatment with SHH inhibited the activation of ERK (extracellular signal-regulated kinases) signals induced by H2O2. Our findings demonstrate that activation of SHH signaling protects cortical neurons against oxidative stress and suggest a potential role of SHH for the clinic treatments of brain ischemia and neurodegenerative disorders.


Subject(s)
Cerebral Cortex/cytology , Hedgehog Proteins/metabolism , Neurons/metabolism , Oxidative Stress/physiology , Animals , Apoptosis/physiology , Cerebral Cortex/physiology , Glutathione Peroxidase/metabolism , Hedgehog Proteins/genetics , Hydrogen Peroxide/pharmacology , Malondialdehyde/metabolism , Neurons/cytology , Neurons/drug effects , Oxidants/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology , Superoxide Dismutase/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...