Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
J Mater Chem B ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896436

ABSTRACT

Multifunctional hydrogel adhesives are highly desirable in wound healing applications, yet their preparation often requires complex material system design to achieve. Herein, a straightforward one-pot two-step polymerization method is developed to prepare adhesive hydrogels for wound dressing based on protocatechuic acid (PCA), polyacrylic acid (PAA), and polyamidoamine-epichlorohydrin (PAE), where PCA provides the catechol groups for strong adhesion, PAA serves as the primary polymer matrix, and PAE acts as a bridge connecting PCA and PAA. This design results in a PAA-PAE-PCA hydrogel having a remarkable instant 90-degree peeling interfacial toughness of 431 J m-2 on porcine skin, which is further amplified to 615 J m-2 after 30 minutes. The hydrogel also possesses the desired features for wound dressing, such as self-healing, antioxidant, anti-UV and antibacterial properties, good cytocompatibility, strong adhesion in use and weak adhesion on removal, as well as reversible and wet adhesion. Finally, in vivo data reveal that the PAA-PAE-PCA hydrogels can significantly accelerate wound healing, as evidenced by a noticeable reduction in the wound area and a diminished inflammatory response. Collectively, these results endorse the obtained multifunctional hydrogel as a promising candidate for wound healing and related fields.

2.
Front Plant Sci ; 15: 1351301, 2024.
Article in English | MEDLINE | ID: mdl-38855462

ABSTRACT

Introduction: The micronutrient deficiency of iron and boron is a common issue affecting the growth of rapeseed (Brassica napus). In this study, a non-destructive diagnosis method for iron and boron deficiency in Brassica napus (genotype: Zhongshuang 11) using hyperspectral imaging technology was established. Methods: The recognition accuracy was compared using the Fisher Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) recognition models. Recognition results showed that Multiple Scattering Correction (MSC) could be applied for the full band hyperspectral data processing, while the LDA models presented better performance on establishing the leaf iron and boron deficiency symptom recognition than the SVM models. Results: The recognition accuracy of the training set reached 96.67%, and the recognition rate of the prediction set could be 91.67%. To improve the model accuracy, the Competitive Adaptive Reweighted Sampling algorithm (CARS) was added to construct the MSC-CARS-LDA model. 33 featured wavelengths were selected via CARS. The recognition accuracy of the MSC-CARS-LDA training set was 100%, while the recognition accuracy of the MSC-CARS-LDA prediction set was 95.00%. Discussion: This study indicates that, it is capable to identify the iron and boron deficiency in rapeseed using hyperspectral imaging technology.

3.
Adv Sci (Weinh) ; 11(22): e2400255, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602431

ABSTRACT

Elastomers are widely used in daily life; however, the preparation of degradable and recyclable elastomers with high strength, high toughness, and excellent crack resistance remains a challenging task. In this report, a polycaprolactone-based poly(urethane-urea) elastomer is presented with excellent mechanical properties by optimizing the arrangement of hard segment clusters. It is found that long alkyl chains of the chain extenders lead to small and evenly distributed hard segment clusters, which is beneficial for improving mechanical properties. Together with the multiple hydrogen bond structure and stress-induced crystallization, the obtained elastomer exhibits a high strength of 63.3 MPa, an excellent toughness of 431 MJ m-3 and an outstanding fracture energy of 489 kJ m-2, while maintaining good recyclability and degradability. It is believed that the obtained elastomer holds great promise in various application fields and it contributes to the development of a sustainable society.

4.
Adv Mater ; : e2312816, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38445902

ABSTRACT

Stretchable materials, such as gels and elastomers, are attractive materials in diverse applications. Their versatile fabrication platforms enable the creation of materials with various physiochemical properties and geometries. However, the mechanical performance of traditional stretchable materials is often hindered by the deficiencies in their energy dissipation system, leading to lower fracture resistance and impeding their broader range of applications. Therefore, the synthesis of fracture-resistant stretchable materials has attracted great interest. This review comprehensively summarizes key design considerations for constructing fracture-resistant stretchable materials, examines their synthesis strategies to achieve elevated fracture energy, and highlights recent advancements in their potential applications.

5.
Plant Physiol ; 195(1): 728-744, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38394457

ABSTRACT

Chlorophyll degradation and carotenoid biosynthesis, which occur almost simultaneously during fruit ripening, are essential for the coloration and nutritional value of fruits. However, the synergistic regulation of these 2 processes at the transcriptional level remains largely unknown. In this study, we identified a WRKY transcription factor, CrWRKY42, from the transcriptome data of the yellowish bud mutant "Jinlegan" ([Citrus unshiu × C. sinensis] × C. reticulata) tangor and its wild-type "Shiranui" tangor, which was involved in the transcriptional regulation of both chlorophyll degradation and carotenoid biosynthesis pathways. CrWRKY42 directly bound to the promoter of ß-carotene hydroxylase 1 (CrBCH1) and activated its expression. The overexpression and interference of CrWRKY42 in citrus calli demonstrated that CrWRKY42 promoted carotenoid accumulation by inducing the expression of multiple carotenoid biosynthetic genes. Further assays confirmed that CrWRKY42 also directly bound to and activated the promoters of the genes involved in carotenoid biosynthesis, including phytoene desaturase (CrPDS) and lycopene ß-cyclase 2 (CrLCYB2). In addition, CrWRKY42 could bind to the promoters of NONYELLOW COLORING (CrNYC) and STAY-GREEN (CrSGR) and activate their expression, thus promoting chlorophyll degradation. The overexpression and silencing of CrWRKY42 in citrus fruits indicated that CrWRKY42 positively regulated chlorophyll degradation and carotenoid biosynthesis by synergistically activating the expression of genes involved in both pathways. Our data revealed that CrWRKY42 acts as a positive regulator of chlorophyll degradation and carotenoid biosynthesis to alter the conversion of citrus fruit color. Our findings provide insight into the complex transcriptional regulation of chlorophyll and carotenoid metabolism during fruit ripening.


Subject(s)
Carotenoids , Chlorophyll , Citrus , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Carotenoids/metabolism , Citrus/genetics , Citrus/metabolism , Chlorophyll/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Promoter Regions, Genetic/genetics
6.
Am J Nephrol ; 55(1): 86-105, 2024.
Article in English | MEDLINE | ID: mdl-37734331

ABSTRACT

INTRODUCTION: Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer. Studies have revealed that DEHP exposure can cause kidney damage. Green tea is among the most popular beverages in China. Green tea polyphenols (GTPs) have been proven to have therapeutic effects on organ damage induced by heavy metal exposure. However, few studies have reported on GTP-relieving DEHP-induced kidney damage. METHODS: C57BL/6J male mice aged 6-8 weeks were treated with distilled water (control group), 1,500 mg/kg/d DEHP + corn oil (model group), 1,500 mg/kg/d DEHP + corn oil + 70 mg/kg GTP (treatment group), corn oil (oil group), and 70 mg/kg GTP (GTP group) by gavage for 8 weeks, respectively. The renal function of mice and renal tissue histopathology of each group were evaluated. The renal tissues of mice in the model, treatment, and control groups were analyzed using high-throughput sequencing. We calculated the differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) using the limma R package, the CIBERSORT algorithm was used to predict immune infiltration, the starBase database was used to screen the miRNA-mRNA regulatory axis, and immunohistochemical analyses were performed to verify protein expression. RESULTS: GTP alleviated the deterioration of renal function, renal inflammation and fibrosis, and mitochondrial and endoplasmic reticulum lesions induced by DEHP in mice. Differential immune infiltrations of plasma, dendritic, T, and B cells were noted between the model and treatment groups. We found that three differentially expressed miRNAs (mmu-miR-383-5p, mmu-miR-152-3p, and mmu-miR-144-3p), three differentially expressed mRNAs (Ddit4, Dusp1, and Snx18), and three differentially expressed proteins (Ddit4, Dusp1, and Snx18) played crucial roles in the miRNA-mRNA-protein regulatory axes when GTPs mitigate DEHP-induced kidney damage in mice. CONCLUSION: GTP can alleviate DEHP-induced kidney damage and regulate immune cell infiltration. We screened four important miRNA-mRNA-protein regulatory axes of GTP, mitigating DEHP-induced kidney damage in mice.


Subject(s)
Diethylhexyl Phthalate , MicroRNAs , Phthalic Acids , Animals , Mice , Male , Diethylhexyl Phthalate/toxicity , Corn Oil/pharmacology , Mice, Inbred C57BL , Antioxidants , Kidney , MicroRNAs/genetics , MicroRNAs/pharmacology , RNA, Messenger , Polyphenols/pharmacology , Polyphenols/therapeutic use , Guanosine Triphosphate/pharmacology
7.
Adv Mater ; 36(4): e2308520, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37996980

ABSTRACT

Omnipresent vibrations pose a significant challenge to flexible pressure sensors by inducing unstable output signals and curtailing their operational lifespan. Conventional soft sensing materials possess adequate elasticity but prove inadequate in countering vibrations. Moreover, the utilization of conventional highly-damping materials for sensing is challenging due to their substantial hysteresis. To tackle this dilemma, dielectric gels with controlled in situ microphase separation have been developed, leveraging the miscibility disparity between copolymers and solvents. The resulting gels exhibit exceptional compression stress, remarkable dielectric constant, and exceptional damping capabilities. Furthermore, flexible pressure sensors based on these microphase-separated gels show a wide detection range and low detection limit, more importantly, excellent sensing performance on vibrating surfaces. This work offers high potentials for applying flexible pressure sensors in complex practical scenarios and opens up new avenues for applications in soft electronics, biomimetic robots, and intelligent sensing.

8.
Animals (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38066963

ABSTRACT

Hybrid pairing of the corresponding silkworm species is a pivotal link in sericulture, ensuring egg quality and directly influencing silk quantity and quality. Considering the potential of image recognition and the impact of varying pupal postures, this study used machine learning and deep learning for global modeling to identify pupae species and sex separately or simultaneously. The performance of traditional feature-based approaches, deep learning feature-based approaches, and their fusion approaches were compared. First, 3600 images of the back, abdomen, and side postures of 5 species of male and female pupae were captured. Next, six traditional descriptors, including the histogram of oriented gradients (HOG), and six deep learning descriptors, including ConvNeXt-S, were utilized to extract significant species and sex features. Finally, classification models were constructed using the multilayer perceptron (MLP), support vector machine, and random forest. The results indicate that the {HOG + ConvNeXt-S + MLP} model excelled, achieving 99.09% accuracy for separate species and sex recognition and 98.40% for simultaneous recognition, with precision-recall and receiver operating characteristic curves ranging from 0.984 to 1.0 and 0.996 to 1.0, respectively. In conclusion, it can capture subtle distinctions between pupal species and sexes and shows promise for extensive application in sericulture.

9.
Curr Pharm Des ; 29(38): 3073-3086, 2023.
Article in English | MEDLINE | ID: mdl-37961864

ABSTRACT

AIM: This work aimed to elucidate the mechanisms of Se@Tri-PTs in alleviating podocyte injury via network pharmacology and in vitro cellular assay. BACKGROUND: Selenized tripterine phytosomes (Se@Tri-PTs) have been confirmed to undertake synergistic and sensitized effects on inflammation, which may be curatively promising for diabetic nephropathy (DN). However, the mechanisms of Se@Tri-PTs in alleviating podocyte injury, a major contributor to DN, still remain unclear. OBJECTIVE: The objective of the study was to find out the underlying mechanisms of Se@Tri-PTs in alleviating podocyte injury in diabetic nephropathy. METHODS: The key components and targets of Tripterygium wilfordii (TW) significant for DN as well as the signaling pathways involved have been identified. A high glucose-induced podocyte injury model was established and verified by western blot. The protective concentration of Se@Tri-PTs was screened by CCK-8 assay. Podocytes cultured with high glucose were treated with Se@Tri-PTs under protective levels. The expression of key protective proteins, nephrin and desmin, in podocytes, was assayed by western blot. Further, autophagy- related proteins and factors, like NLRP3, Beclin-1, LC3II/LC3, P62, and SIRT1, were analyzed, which was followed by apoptosis detection. RESULTS: Network pharmacology revealed that several monomeric components of TW, especially Tri, act on DN through multiple targets and pathways, including the NLRP3-mediated inflammatory pathway. Se@Tri-PTs improved the viability of podocytes and alleviated their injury induced by high glucose at 5 µg/L or above. High-glucose induction promoted the expression of NLRP3 in podocytes, while a low concentration of Se@Tri-PTs suppressed the expression. A long-term exposure of high glucose significantly inhibited the autophagic activity of podocytes, as manifested by decreased Beclin-1 level, lower ratio of LC3 II/LC3 I, and up- regulation of P62. This abnormality was efficiently reversed by Se@Tri-PTs. Importantly, the expression of SIRT1 was up-regulated and podocyte apoptosis was reduced. CONCLUSION: Se@Tri-PTs can alleviate podocyte injury associated with DN by modulating NLRP3 expression through the pathway of SIRT1-mediated autophagy.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Podocytes , Humans , Podocytes/metabolism , Diabetic Nephropathies/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phytosomes , Sirtuin 1/metabolism , Beclin-1/pharmacology , Network Pharmacology , Glucose/metabolism , Diabetes Mellitus/metabolism
10.
J Chromatogr A ; 1711: 464450, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37871503

ABSTRACT

The three-dimensional (3D) rose-like zinc oxide (ZnO) material was prepared by a simple one-step CTAB-assisted hydrothermal strategy and used as a headspace solid-phase microextraction (HS-SPME) coating. Polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed by gas chromatography with flame ionization detector (GC-FID), and conclusively applied to ultrasensitive detection in lake and river water. Compared with one-dimensional (1D) pencil-like ZnO, the layer-by-layer petal-like structure could fully expose mass adsorption sites on the surface, which could significantly improve the adsorption. The enrichment factors with 7535-8595 for PCBs and 3855-7320 for PAHs were achieved. The established method provided a satisfactory linear range (0.005-30 ng·mL-1), coefficient (R2 > 0.9978), ultra-low limit detection (1-3 pg·mL-1), and long service life (≥ 150 times). The recoveries of 83.42-120.86 % were obtained in the real detection application of lake and river water. This work demonstrated that 3D rose-like ZnO with low cost, simple synthesis, fast extraction ability and high enrichment performance was an ideal coating material, which was hoped to enrich other compounds with similar structures with PCBs and PAHs.


Subject(s)
Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Zinc Oxide , Polycyclic Aromatic Hydrocarbons/analysis , Polychlorinated Biphenyls/analysis , Solid Phase Microextraction/methods , Zinc , Water/chemistry
11.
Mikrochim Acta ; 190(11): 446, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853180

ABSTRACT

Ionic liquid (IL)-modified UiO-66-NH2 composite was prepared and used as sorbent of dispersed solid-phase extraction (dSPE) for extracting trace benzoylurea insecticides (BUs) from complex environmental matrices. The IL in framework endowed the prepared material had electropositive characteristics, which can produce interaction with electron rich guest molecules, such as BUs. The high thermal and chemical stability of UiO-66-NH2/IL enabled it to be reused for 16 times without significant reduction in adsorption performance. Due to the multiple forces including π-π, hydrogen bonding, and fluorine-fluorine interaction, UiO-66-NH2/IL showed good adsorption performance, short adsorption time (20 s) and rapid desorption ability (60 s) for BUs. Under the optimal conditions, the method exhibited wide linear range (0.02-500 ng mL-1) with correlation coefficient (R2) not worse than 0.9928, high enrichment factor (252-300), and low detection limit (0.005-0.4 ng mL-1). The dispersed solid phase extraction coupling with high-performance liquid chromatography-diode array detector (dSPE-HPLC-DAD) was successfully used to detection of BUs in real environmental samples and satisfactory recoveries were obtained (80.5%±2.4-118%±3.2). The results indicated that UiO-66-NH2/IL composite can be a potential sorbent for the preconcentration of trace insecticides in environmental samples.

12.
J Inflamm Res ; 16: 4461-4470, 2023.
Article in English | MEDLINE | ID: mdl-37842189

ABSTRACT

The activation of the cGAS-STING pathway is associated with many sterile inflammatory and inflammatory conditions, including acute kidney injury. As a cytoplasmic DNA sensor, sensitization of the cGAS-STING pathway can ignite the innate immune response in vivo and trigger a series of biological effects. In recent years, there is increasing evidence showing that the cGAS-STING pathway plays a vital role in acute kidney injury, a non-inflammatory disease induced by activation of innate immune cells, and closely related to intracellular reactive oxygen species, mitochondrial DNA, and the cGAS-STING pathway. This review provides a prospect of the cGAS-STING pathway and its relationship to acute kidney injury.

13.
Nat Commun ; 14(1): 6563, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848441

ABSTRACT

Underwater adhesives receive extensive attention due to their wide applications in marine explorations and various related industries. However, current adhesives still suffer from excessive water absorption and lack of spontaneity. Herein, we report an autonomous underwater adhesive based on poly(2-hydroxyethyl methacrylate-co-benzyl methacrylate) amphiphilic polymeric matrix swollen by hydrophobic imidazolium ionic liquid. The as-prepared adhesive is tough and flexible, showing little to none instantaneous underwater adhesion onto the PET substrate, whereas its adhesion energy on the substrate can grow more than 5 times to 458 J·m-2 after 24 hours. More importantly, this process is entirely spontaneous, without any external pressing force. Our comprehensive studies based on experimental characterizations and molecular dynamic simulations confirm that such autonomous adhesion process is driven by water-induced rearrangement of the functional groups. It is believed that such material can provide insights into the development of next-generation smart adhesives.

14.
ACS Macro Lett ; 12(11): 1423-1436, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37812608

ABSTRACT

Dispersity (D) as a critical parameter indicates the level of uniformity of the polymer molar mass or chain length. In the past several decades, the development of explicit equations for calculating D experiences a continual revolution. This viewpoint tracks the historical evolution of the explicit equations from living to reversible-deactivation polymerization systems. Emphasis is laid on displaying the charm of explicit D equations in batch reversible-deactivation radical polymerization (RDRP), with highlights of the relevant elegant mathematical manipulations. Some representative emerging applications enabled by the existing explicit equations are shown, involving nitroxide-mediated polymerization (NMP), atom transfer radical polymerization (ATRP), and reversible addition-fragmentation chain transfer (RAFT) polymerization systems. Stemming from the several outlined challenges and outlooks, sustained concerns about the explicit D equations are still highly deserved. It is expected that these equations will continue to play an important role not only in traditional polymerization kinetic simulation and design of experiments but also in modern intelligent manufacturing of precision polymers and classroom education.

15.
World J Gastroenterol ; 29(34): 5054-5074, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37753369

ABSTRACT

BACKGROUND: Di (2-ethylhexyl) phthalate (DEHP) is a common plasticizer known to cause liver injury. Green tea is reported to exert therapeutic effects on heavy metal exposure-induced organ damage. However, limited studies have examined the therapeutic effects of green tea polyphenols (GTPs) on DEHP-induced liver damage. AIM: To evaluate the molecular mechanism underlying the therapeutic effects of GTPs on DEHP-induced liver damage. METHODS: C57BL/6J mice were divided into the following five groups: Control, model [DEHP (1500 mg/kg bodyweight)], treatment [DEHP (1500 mg/kg bodyweight) + GTP (70 mg/kg bodyweight), oil, and GTP (70 mg/kg bodyweight)] groups. After 8 wk, the liver function, blood lipid profile, and liver histopathology were examined. Differentially expressed micro RNAs (miRNAs) and mRNAs in the liver tissues were examined using high-throughput sequencing. Additionally, functional enrichment analysis and immune infiltration prediction were performed. The miRNA-mRNA regulatory axis was elucidated using the starBase database. Protein expression was evaluated using immunohistochemistry. RESULTS: GTPs alleviated DHEP-induced liver dysfunction, blood lipid dysregulation, fatty liver disease, liver fibrosis, and mitochondrial and endoplasmic reticulum lesions in mice. The infiltration of macrophages, mast cells, and natural killer cells varied between the model and treatment groups. mmu-miR-141-3p (a differentially expressed miRNA), Zcchc24 (a differentially expressed mRNA), and Zcchc24 (a differentially expressed protein) constituted the miRNA-mRNA-protein regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage in mice. CONCLUSION: This study demonstrated that GTPs mitigate DEHP-induced liver dysfunction, blood lipid dysregulation, fatty liver disease, and partial liver fibrosis, and regulate immune cell infiltration. Additionally, an important miRNA-mRNA-protein molecular regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage was elucidated.

16.
Front Plant Sci ; 14: 1170825, 2023.
Article in English | MEDLINE | ID: mdl-37139114

ABSTRACT

Response regulator (RR) is an important component of the cytokinin (CK) signal transduction system associated with root development and stress resistance in model plants. However, the function of RR gene and the molecular mechanism on regulating the root development in woody plants such as citrus remain unclear. Here, we demonstrate that CcRR5, a member of the type A RR, regulates the morphogenesis of root through interacting with CcRR14 and CcSnRK2s in citrus. CcRR5 is mainly expressed in root tips and young leaves. The activity of CcRR5 promoter triggered by CcRR14 was proved with transient expression assay. Seven SnRK2 family members with highly conserved domains were identified in citrus. Among them, CcSnRK2.3, CcSnRK2.6, CcSnRK2.7, and CcSnRK2.8 can interact with CcRR5 and CcRR14. Phenotypic analysis of CcRR5 overexpressed transgenic citrus plants indicated that the transcription level of CcRR5 was associated with root length and lateral root numbers. This was also correlated to the expression of root-related genes and thus confirmed that CcRR5 is involved in the root development. Taken together, the results of this study indicate that CcRR5 is a positive regulator of root growth and CcRR14 directly regulates the expression of CcRR5. Both CcRR5 and CcRR14 can interact with CcSnRK2s.

17.
Talanta ; 260: 124540, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37116361

ABSTRACT

Due to widespread application of benzoylurea insecticides (BUs) and its persistence in environment, the effective capture of benzoylurea insecticides residues in environment is an important issue of environmental safety monitoring. To obtain excellent adsorption performance, creating defective structure in metal-organic frameworks (MOFs) can be employed as the method for adjusting its properties. Zirconium(Ⅳ)-based MOF termed as UiO-66-30% was constructed with 2-aminoterephthalic acid (NH2-BDC) and terephthalic acid (H2BDC) as building blocks. After calcination and removal of thermal-sensitive ligand (NH2-BDC), hierarchically porous UiO-66-30% (HP-UiO-66-30%) with multistage pore structure and good stability was obtained. The unique structure of HP-UiO-66-30% endowed it to achieve instantaneous equilibrium (within 2 min) when it was used as a dispersed solid phase extraction (d-SPE) adsorbent to extract BUs from environmental samples, greatly reducing the operation time. A wide linear range (0.05-200 ng mL-1), good linearity (R2 ≥ 0.9980), low detection limits (0.01-0.03 ng mL-1) and quantification limits (0.05-0.1 ng mL-1) were obtained for BUs. In addition, the HP-UiO-66-30% material possessed the good reusability and the adsorption capacity did not change significantly over 16 adsorption-desorption cycles. Finally, the established dispersed solid phase extraction-high performance liquid chromatography-diode array detector (d-SPE-HPLC-DAD) method was successfully applied to determination of BUs residues in environmental soil samples. The results demonstrated that HP-UiO-66-30% was an excellent sorbent for extraction BUs from environmental samples.

18.
Front Plant Sci ; 14: 1161469, 2023.
Article in English | MEDLINE | ID: mdl-37035078

ABSTRACT

Salt stress damage to plants has been becoming a global concern for agriculture. The application of potassium fulvic acid (PFA) is a promising strategy to alleviate the damage to plants and improve soil quality. However, the study of PFA on plant growth and rhizosphere microbial community remains limited. In this study, microcosmic experiments were conducted to verify the effect of PFA on citrus. Trifoliate orange (Poncirus trifoliata), the most important citrus rootstock, was used to evaluate the effect of PFA on salt damage. The results showed that PFA significantly increased the contents of chlorophyll a, chlorophyll b and carotenoid by 30.09%, 17.55% and 27.43%, and effectively avoided the yellowing and scorching of leaves under salt stress. Based on the results of two-way ANOVA, the mitigation of salt stress on trifoliate seedlings primarily attributed to the enhancement of protective enzyme activities, K+/Na+ ratio and the contents of soluble sugar, soluble protein and proline. Moreover, PFA enhanced neutral protease (S-NPT), sucrase (S-SC) and urease (S-UE) of rhizosphere soil and improved soil nutrition status. The abundance of Bacillus, a kind of rhizosphere beneficial bacteria, was improved by PFA under salt stress, which was mainly associated with the increased activities of S-NPT, S-SC and S-UE. Overall, the application of PFA showed great potential for the alleviation of salt damage on citrus.

19.
Adv Mater ; 35(20): e2210092, 2023 May.
Article in English | MEDLINE | ID: mdl-36929503

ABSTRACT

Elastomers have many industrial, medical and commercial applications, however, their huge demand raises an important question of how to dispose of the out-of-service elastomers. Ideal elastomers that are concurrently tough, recyclable, and degradable are in urgent need, but their preparation remains a rigorous challenge. Herein, a polycaprolactone (PCL) based polyurethane elastomer is designed and prepared to meet this demand. Owing to the presence of dynamic coordination bond and the occurrence of strain-induced crystallization, the obtained elastomer exhibits a high toughness of ≈372 MJ m-3 and an unprecedented fracture energy of ≈646 kJ m-2 , which is much higher than natural rubber (≈50 MJ m-3 for toughness and ≈10 kJ m-2 for fracture energy). In addition, the elastomer can be recycled at least three times using solvent without losing its mechanical properties and can be degraded by lipase in ≈2 months. Finally, biological experiments demonstrate that the elastomer possesses good biocompatibility and can facilitate wound healing in mice when used as sutures. It is believed that the obtained elastomer meets the requirements for next-generation elastomers and is expected to be used in emerging fields such as biomedicine, flexible electronics, robotics and beyond.


Subject(s)
Elastomers , Robotics , Elastomers/chemistry , Polyurethanes/chemistry , Animals , Mice
20.
Food Chem ; 409: 135272, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36623357

ABSTRACT

Amino-modified Zn/Fe bimetallic metal-organic frameworks (NH2-Zn/Fe-MIL-88) were synthesized using a one-step solvothermal method with FeCl3·6H2O and Zn(NO3)2·6H2O as metal salts and 2-aminoterephthalic acid as organic ligand. The morphology of NH2-Zn/Fe-MIL-88 can be regulated from octahedral-like to spindle-like with changing molar ratios of metal salts. Using NH2-Zn/Fe-MIL-88 as sorbent, a dispersive solid-phase extraction with putting sorbents into sample solution to extract targets was developed to preconcentrate phytohormones in vegetables. To study the extraction efficiency, a series of NH2-Zn/Fe-MIL-88s with varying molar ratios of metal salts were prepared. The results indicated that NH2-Zn/Fe-MIL-88(1) presented the highest extraction efficiency (82.6 %-98.1 %) to phytohormones among all prepared NH2-Zn/Fe-MIL-88(x). The limits of detection were calculated at 0.07-0.15 ng/mL. The adsorption isotherms and kinetic parameters of NH2-Zn/Fe-MIL-88 for phytohormones were conformed to Langmuir and pseudo-second-order models. The NH2-Zn/Fe-MIL-88 as sorbent combined with HPLC was applied to detect phytohormones in cucumber and tomato samples.


Subject(s)
Metal-Organic Frameworks , Vegetables , Salts , Plant Growth Regulators , Solid Phase Extraction , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...